3.6. Закон Архимеда. Основы теории плавания
Применим описанный выше прием нахождения вертикальной составляющей силы давления жидкости на криволинейную поверхность для доказательства известного закона Архимеда.
Предположим, что в жидкость погружено тело АВСД, ограниченное любой криволинейной поверхностью (рис.3.17). Проектируя тело на вертикальную плоскость и пользуясь формулой (3.23) нетрудно понять, что горизонтальные силы давления слева и справа уравновешиваются, поскольку площадь проекции одна и та же, т.е. , тогда
Рис.3.17
Для определения вертикальной силы давления на погруженное тело рассмотрим отдельно вертикальные составляющие на нижнюю поверхность АДС и верхнюю АВС.
Вертикальная составляющая силы избыточного давления жидкости на верхнюю часть поверхности тела направлена вниз и равна весу жидкости в объеме АА′С′СВА.
Вертикальная составляющая силы давления жидкости на нижнюю часть поверхности тела направлена вверх и равна весу жидкости в объеме АА′С′СДА.
Отсюда следует, что вертикальная равнодействующая силы давления жидкости на тело будет направлена вверх, она равна весу жидкости в объеме, равном разности указанных двух объемов, т.е. в объеме тела:
. (3.27)
В этом и заключается закон Архимеда, обычно формулируемый так: на тело, погруженное в жидкость, действует выталкивающая сила, равная весу вытесненной этим телом жидкости.
На законе Архимеда основана теория плавания тел, в которой в качестве первых задач определяются плавучесть и остойчивость.
Плавучестью тела называется его способность плавать в полупогруженном состоянии.
В зависимости от соотношения между весом плавающего тела G и подъемной силой Рп возможны три состояния тела, погруженного в жидкость. Подъемная сила при этом приложена в центре погруженной части тела, называемом центром водоизмещения.
G>Рп – тело тонет.
G<Рп – тело плавает в полупогруженном состоянии.
G=Рп – тело в погруженном состоянии.
В первом случае тело тонет, т.к. равнодействующая сила G и Рп направлена вниз.
Во втором случае равнодействующая сил G и Рп направлена вверх, поэтому тело всплывает. Однако оно поднимается над поверхностью воды лишь до тех пор, пока новая подъемная сила Рп не будет равна весу тела, т.е. G=Рп.
В третьем случае, когда первоначально G=Рп (довольно редкий случай), тело может находиться в устойчивом, неустойчивом или безразличном равновесии.
При воздействии на плавающее тело внешних сил, например ветра, навала судов, оно будет отклоняться от положения равновесия (давать крен).
Рис.3.18
Каждое плавающее тело должно обладать остойчивостью. При этом различают остойчивость статическую и динамическую. Рассмотрим только статическую остойчивость.
Под статической остойчивостью подразумевают способность плавающего тела плавать в нормальном положении и в случае статического нарушения нормального положения вследствие крена возвращаться в прежнее положение, как только силы, вызвавшие крен, прекратят свое действие.
При исследовании остойчивости необходимо иметь в виду, что при крене плавающего тела (судна) его центр тяжести является всегда одной и той же точкой С (рис.3.18). центр же водоизмещения (точка d) вследствие того, что изменяется форма объема вытесненной телом жидкости, перемещается по линии, называемой линией центров водоизмещения, поэтому при крене плавающего тела сила тяжести и равная ей по величине подъемная сила всегда создают пару сил. Для того чтобы тело обладало статической остойчивостью, необходимо, чтобы эта пара сил стремилась возвратить тело в нормальное положение. Это, например, будет иметь место во всех случаях, когда центр тяжести расположен ниже центра водоизмещения. Но в большинстве случаев центр тяжести находится выше центра водоизмещения (рис.3.19, 3.20).
Рис.3.19
Здесь могут представиться два случая. Первый случай – остойчивое плавание (рис.3.19). При крене плавсредства по часовой стрелке центр водоизмещения располагается правее линии действия силы тяжести. В этом случае линия действия подъемной силы Рп пересекает ось плавания в точке М, расположенной выше центра тяжести. Создающаяся при этом пара сил (Р-G) стремится возвратить плавсредство в исходное состояние.
Второй случай – неостойчивое плавание (рис.3.20). При крене плавсредства по часовой стрелке центр водоизмещения располагается левее линии действия силы тяжести. В этом случае линия действия подъемной силы Рп пересекает ось плавания в точке М, расположенной ниже центра тяжести. Создающаяся при этом пара сил (P-G) стремится опрокинуть плавсредство.
Рис.3.20
Точка М пересечения линии действия подъемной силы с осью плавания называется метацентром.
Для того чтобы тело обладало остойчивостью, необходимо, чтобы метацентр находился выше центра тяжести.
- «Челябинский государственный агроинженерный
- Университет»
- Гидравлика
- Челябинск
- Введение
- Раздел 1 Гидравлика
- Силы, действующие в жидкости
- 2. Физические свойства жидкости
- 2.1. Плотность и удельный вес жидкости
- 2.2. Сжимаемость жидкости
- 2.3. Температурное расширение жидкости
- 2.4. Вязкость жидкостей
- 3. Гидростатика
- 3.1. Свойства гидростатического давления
- 3.2. Дифференциальные уравнения равновесия жидкости (уравнения Леонарда Эйлера)
- 3.3. Основное уравнение гидростатики. Эпюры гидростатического давления
- 3.4. Сила гидростатического давления на плоские поверхности
- 3.5. Сила гидростатического давления, действующая на криволинейные поверхности
- 3.6. Закон Архимеда. Основы теории плавания
- 3.7. Гидростатические машины и механизмы
- 4. Гидродинамика
- 4.1. Основные понятия
- 4.2. Уравнение неразрывности (сплошности)
- 4.3. Уравнение д.Бернулли для элементарной струйки идеальной жидкости. График уравнения д.Бернулли
- 4.4. Уравнение д.Бернулли для элементарной струйки реальной жидкости. График уравнения д.Бернулли
- 4.5. Уравнение д.Бернулли для потока реальной жидкости
- 5. Определение гидравлических потерь
- 5.1. Классификация потерь напора
- 5.2. Основное уравнение равномерного движения
- 5.3. Формулы для определения гидравлических потерь
- 5.4. Режимы движения жидкости. Критерий рейнольдса
- 5.5. Особенности ламинарного режима движения жидкости
- 5.6. Особенности турбулентного режима движения жидкости
- 5.7. Влияние режима движения жидкости и шероховатости на величину коэффициента трения в трубах (график Никурадзе)
- 6. Гидравлический расчет трубопроводов
- 6.1. Классификация трубопроводов
- 6.2. Расходная характеристика трубопровода (модуль расхода)
- 6.3. Гидравлические характеристики трубопроводов
- 6.4. Равномерный путевой расход
- 6.5. Гидравлический удар в трубопроводах. Гидравлический таран
- 7. Истечение жидкости из отверстий и насадков
- 7.1. Истечение жидкости из малого отверстия в тонкой стенке
- 7.2. Истечение жидкости через насадки
- 8. Гидравлическое моделирование
- 8.1. Сущность моделирования
- 8.2. Основные законы гидродинамического подобия. Критерий подобия Ньютона
- 8.3. Критерий подобия Рейнольдса, Фруда, Эйлера, Вебера
- Раздел 2 Гидравлические машины
- 9. Насосы
- 9.1. Классификация насосов
- 9.2. Основные параметры насосов
- 9.2.1. Напор, развиваемый насосом
- 9.2.2. Мощность и кпд насоса
- 9.3. Область применения насосов
- 10. Динамические насосы
- 10.1. Центробежные насосы
- 10.1.1. Схема устройства и принцип действия
- 10.1.2. Основное уравнение центробежного насоса
- 10.1.3. Подача центробежного насоса
- 10.1.4. Теоретические характеристики центробежного насоса
- 10.1.5. Действительная характеристика центробежного наоса
- 10.1.6. Универсальные характеристики центробежного насоса
- 10.1.7. Процесс всасывания и явление кавитации в центробежном насосе
- 10.1.8. Законы пропорциональности центробежного насоса
- 10.1.9. Работа центробежного насоса на сеть
- 10.1.10. Регулирование работы центробежного насоса
- 10.1.11. Совместная работа центробежных насосов
- 10.1.12. Центробежные насосы специального назначения
- 10.2. Насосы трения
- 10.2.1. Вихревые насосы
- 10.2.2. Струйные насосы
- 10.2.3. Воздушные насосы
- 10.2.4. Шнековые насосы
- 10.2.5. Дисковые насосы
- 10.2.6. Лабиринтные насосы
- 10.2.7. Вибрационные насосы
- 11. Объемные насосы
- 11.1. Возвратно - поступательные насосы
- 11.2. Роторные насосы
- Раздел 3 гидравлическиЙ привод
- 12. Классификация
- 13. Объемный гидропривод
- 13.1. Функциональная схема
- 13.2. Принципиальная схема гидропривода
- 13.3. Область применения объемных гидроприводов
- 13.4. Достоинства и недостатки объемных гидроприводов
- 13.5. Требования к рабочей жидкости
- 13.6. Объемный гидропривод возвратно-поступательного движения
- 13.7. Принцип расчета гидропривода
- 13.8. Объемный гидропривод вращательного движения
- 13.9. Регулирование скорости гидропривода
- 13.9.1. Объемное регулирование
- 13.9.2. Дроссельное регулирование
- 13.10. Следящий гидропривод
- 14. Гидролинии, гидроемкости, фильтры
- Раздел 4 сельскохозяйственное водоснабжение
- 15. Системы водоснабжения. Классификация.
- Слово о воде
- 16. Водоснабжение из поверхностных источников
- 17. Водоснабжение из подземных источников
- 18. Водонапорные и регулирующие устройства
- 19. Требования, предъявляемые к качеству хозяйственно–питьевой воды. Методы улучшения качества воды
- 20. Основные данные для проектирования водопроводной сети
- Раздел 5 Водоотведение
- 21. Основы канализации
- 22. Уловители нефтепродуктов
- Литература
- Содержание