Виды поверки
Межгосударственным советом по стандартизации, метрологии и сертификации (стран СНГ) установлены следующие виды поверки
Первичная поверка — поверка, выполняемая до ввода в эксплуатацию средства измерений или после ремонта, а также при ввозе средства измерений из-за границы, при продаже.
Периодическая поверка — поверка средств измерений, находящихся в эксплуатации или на хранении, выполняемая через установленные межповерочные интервалы времени.
Внеочередная поверка — Поверка средства измерений, проводимая до наступления срока его очередной периодической поверки.
Инспекционная поверка — поверка, проводимая органом государственной метрологической службы при проведении государственного надзора за состоянием и применением средств измерений.
Экспертная поверка — проводится при возникновении разногласий по вопросам, относящимся к метрологическим характеристикам, исправности средств измерений и пригодности их к применению.
Прямым измерением называют измерение, при котором значение измеряемой физической величины находят непосредственно из опытных данных. Прямые измерения характеризуются тем, что эксперимент как процесс измерения производится над самой измеряемом величиной, имея в виду то или иное её проявление. Прямые измерения выполняются при помощи средств, предназначенных для измерения данных величин. Числовое значение измеряемой величины отсчитывается непосредственно по показанию измерительного прибора. средств, величин. Примеры прямых измерений: измерение тока амперметром; напряжения - компенсатором; массы - на рычажных весах и др. Зависимость между измеряемой величиной X и результатом измерения Y при прямом измерении характеризуется уравнением X = Y, т.е. значение измеряемой величины принимается равным полученному результату. К сожалению, прямое измерение не всегда можно провести. Иногда нет под рукой соответствующего измерительного прибора, или он не удовлетворяет по точности, или даже вообще ещё не создан. В этом случае приходится прибегать к косвенному измерению. Косвенными измерениями называют такие измерения, при которых значение искомой величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях измеряют не собственно определяемую величину, а другие величины, функционально с ней связанные. Значение измеряемой косвенным путем величины X находят вычислением по формуле X = F(Y1, Y2, … ,Yn), где Y1 , Y2 , … Yn - значения величин, полученных путем прямых измерений. Примером косвенного измерения является определение электрического сопротивления с помощью амперметра и вольтметра. Здесь путем прямых измерений находят значения падения напряжения U на сопротивлении R и ток I через него, а искомое сопротивление R находят по формуле R = U/I . Операцию вычисления измеряемой величины может производить вручную или с помощью вычислительного устройства, помещенного в прибор. Прямые и косвенные измерения в настоящее время широко используются на практике и являются наиболее распространенными видами измерений.
Жидкостные термометры. Устройство. Принцип действия.
Жидкостный термометр - это, тот самый стеклянный термометр, который можно увидеть практически повсеместно. Жидкостные термометры могут быть как бытовыми, так и техническими (например, термометр ттж - термометр технический жидкостный). Жидкостный термометр работает по самой простой схеме - при изменении температуры, объем жидкости внутри термометра изменяется и при увеличении температуры – жидкость расширяется и ползет вверх, а при уменьшении - наоборот. Обычно в жидкостных термометрах применяется либо спирт, либо ртуть.
Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды.
В связи с запретом применения ртути во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав галинстан.
Жидкостный термометр - это, как правило, термометр из стекла (стеклянный термометр) , увидеть который можно практически везде. Жидкостные термометры бывают как бытовыми, так и техническими (термометр ттж - термометр технический жидкостный) . Жидкостный термометр работает по простой схеме - объем жидкости внутри термометра изменяется при изменении температуры вокруг нее. Жидкость, находящаяся в термометре, занимает меньший объем капилляра при низкой температуре, а при высокой температуре жидкость в столбике термометра начинает увеличиваться в объеме, тем самым будет расширяться, и подниматься вверх. Обычно в жидкостных термометрах применяется либо спирт, либо ртуть. Температура, измеряемая жидкостным термометром, преобразуется в линейное перемещение жидкости, шкала наносится прямо на поверхность капилляра или прикрепляется к нему снаружи. Чувствительность термометра зависит от разности коэффициентов объемного расширения термометрической жидкости и стекла, от объема резервуара и диаметра капилляра. Чувствительность термометра обычно лежит в пределах 0,4…5 мм/С (для некоторых специальных термометров 100…200 мм/°С) . Технические жидкостные стеклянные термометры применяют для измерения температур от -30 до 600°С. При монтаже стеклянного технического жидкостного термометра его часто помещают в защитную металлическую оправу для изоляции прибора от измеряемой среды. Для уменьшения инерционности измерения в кольцевой зазор между термометром и стенкой оправы при измерении температуры до 150°С заливают машинное масло; при измерении более высоких температур в зазор насыпают медные опилки. Как любые другие точные приборы, промышленные технические термометры требуют проведения регулярной поверки.
- Автоматическое управление. Системы автоматического управления. Область применения.
- Объекты управления. Воздействия на объекты управления.
- Объекты управления. Статические и динамические характеристики. Режимы эксплуатации.
- Устойчивость объектов управления.
- Теплотехнические объекты управления.
- Структура систем автоматического управления (сау). Виды сау.
- Задачи систем автоматического управления.
- Типовые виды внешних воздействий.
- Типовые звенья. Безынерционное звено.
- Типовые звенья. Апериодическое звено.
- Типовые звенья. Колебательное звено.
- Типовые звенья. Интегрирующее звено.
- Температурные шкалы.
- Класс точности. Вариация и чувствительность приборов.
- Классификация методов измерения.
- Классификация измерительных приборов.
- Поверка. Прямые или косвенные измерения.
- Виды поверки
- Манометрические термометры. Устройство. Принцип действия.
- Дилатометрические и биметаллические термометры. Принцип действия.
- Термометры расширения подразделяются на:
- Термоэлектрический метод измерения температуры.
- Термобатареи. Дифференциальные термометры. Принцип действия.
- Поправка на температуру свободных концов.
- Требования к термоэлектродным материалам.
- Компенсационный метод измерения термо-эдс.
- Потенциометры. Устройство. Принцип действия.
- Милливольтметры. Устройство. Принцип действия.
- Описание лабораторного стенда
- Автоматические потенциометры. Принцип действия.
- Электрические термометры сопротивления. Устройство. Принцип действия. Требования к установке.
- Термопреобразователи сопротивления
- Требования, предъявляемые к материалам термометров сопротивления.
- Полупроводниковые термометры сопротивления (терморезисторы).
- Двух и трехпроводная схема соединения логометра с термометрами сопротивления. Промышленные логометры
- Логометры. Устройство. Принцип действия.
- Автоматические уравновешенные мосты. Устройство. Принцип действия.
- Электронные термопреобразователи. Структура. Назначение.
- Бесконтактные методы измерения температур. Л №7-8
- Оптические пирометры. Устройство. Принцип действия.
- Фотоэлектрический метод измерения температур.
- Радиационные пирометры. Принцип действия.
- Пирометры спектрального отношения.
- Классификация приборов для измерения давления.
- Деформационные манометры. Устройство. Принцип действия.
- Электрические манометры. Принцип действия.
- Жидкостные дифманометры. Устройство. Принцип действия.
- Классификация методов и средств измерения расхода.
- Стандартные сужающие устройства.
- Измерение уровня.
- Поплавковые уровнемеры
- Буйковые уровнемеры
- Гидростатические уровнемеры
- Емкостные уровнемеры
- Радиоизотопные уровнемеры
- Ультразвуковые и акустические уровнемеры
- Общие сведения о газовом анализе.