2.2.5 Удаление вредных примесей из шихты при спекании руд и концентратов
В ходе агломерации происходит интенсивное выгорание сульфидной серы шихты. Пирит FeS2 и пирротин FeS начинают окисляться с 250—280 °С по реакциям: 4FeS2 + 11О2 = 2Fe2O3 + 8SO2; 4FeS + 7O2 = 2Fe2O3 + 4SO2. Выше 1383 °C в воздушной атмосфере гематит диссоциирует с образованием магнетита, который и является в этом случае единственным твердым продуктом реакции: 3FeS2 + 8О2 = Fe3O4 + 6SO2; 3FeS + 5О2 = Fe3O4 + 3SO2
Определенную роль играет и прямое взаимодействие оксидов железа шихты и сульфидов: 16Fe2O3 + FeS2 = HFe3O4 + 2SO2 (>500°C); 10Fe2O3 + FeS = 7Fe3O4 + SO2 (>1100°C).
В присутствии катализаторов (Fe2O3) до 40 % SO2 окисляется до SO3. Некоторая часть органической серы коксовой мелочи переходит в газовую фазу и присутствует в газовой фазе в виде паров комплексов S2 (500—600 °С); S6 и S8 (до 500 °С). В отходящих газах установлено также наличие H2S и COS. В зоне горения твердого топлива сернистые соединения захватываются из газовой фазы железистым силикатным расплавом и растворяются в нем в виде CaS. Кроме того, при температурах до 900—1000 °С известь, известняк и ферриты кальция поглощают SO2 из газа по схеме: СаО + SO2 + 0,5Н2О = CaSO3*0,5H2O (сульфит кальция); CaSO3*0,5H2O = CaSO3 + 0,5Н2О (>150 °С); CaSO3 + 0,5О2 = CaSO4 (ангидрит).
Таким образом, высокая основность шихты ухудшает условия ее десульфурации. В равных условиях степень десульфурации шихты повышается с уменьшением крупности ее частиц. Однако чрезмерное переизмельчение может ухудшить газопроницаемость слоя и замедлить приток воздуха к частицам сульфидов, что снизит степень десульфурации. Как видно из приведенных выше реакций, избыток кислорода необходим для выгорания сульфидов шихты. Другими словами, эффективное выгорание сульфидной серы возможно лишь при окислительном режиме агломерации, т. е. при низких расходах коксовой мелочи, если они обеспечивают достаточно высокие температуры в спекаемом слое.
При агломерации магнетитового концентрата наилучшая десульфурация достигается при 3,5—4,5 % твердого топлива в шихте. Степень удаления сульфидной серы может достигать при агломерации 95—99 %. Поскольку при окислении сульфидов выделяется значительное количество тепла, 1 кг пирита в шихте по теплотворной способности заменяет 0,3 кг коксовой мелочи среднего качества. Сульфатная сера гипса (CaSO4*2H2O), барита (BaSO4) удаляется из шихты при агломерации всего на 60—70 %, так как диссоциация сульфатов требует длительного воздействия высоких температур (>1000 °С) на вещество шихты. Удалению сульфатной серы способствуют, следовательно, повышенные расходы топлива на спекание.
Удаление мышьяка, цинка, свинца шихты при производстве офлюсованного агломерата почти не имеет места. Однако при вводе в шихту хлорирующих добавок, например 2—3 % СаС12 (по массе), эти элементы образуют летучие хлориды с низкими (700—1000 °С) температурами кипения. В этих условиях удается удалить из шихты до 90 % РЬ, до 65 % Zn, до 60 % As. Что касается фосфора, то при любых условиях спекания он целиком переходит из шихты в агломерат.
- 1 Сырые материалы доменной плавки
- 1.1 Каменноугольный кокс
- 1.1.1 Процесс коксования
- 1.1.2 Устройство коксовых печей и цехов
- 1.1.3 Качество кокса
- 1.2 Железные руды
- 1.2.1 Классификация и генезис железных руд
- 1.2.2 Оценка качества железных руд
- 1.2.3 Важнейшие месторождения железных руд
- 2 Подготовка железных руд к доменной плавке
- 2.1 Современная к схема подготовки руд к доменной плавке
- 2.2 Агломерация железных руд и концентратов
- 2.2.1 Общие вопросы
- 2.2.2 Конвейерные агломерационные машины
- 2.2.3 Реакции между твердыми фазами
- 2.2.4 Плавление шихты, кристаллизация расплава и образование конечной микроструктуры агломерата
- 2.2.5 Удаление вредных примесей из шихты при спекании руд и концентратов
- 2.2.6 Качество агломерата
- 2.3 Производство железорудных окатышей
- 2.3.1 Получение сырых окатышей
- 2.3.2 Высокотемпературное упрочнение окатышей
- 2.3.3 Получение окатышей безобжиговым путем
- 2.3.4 Металлургические свойства окатышей
- 2.3.5 Сравнение металлургических свойств агломерата и окатышей
- 2.3.6 Производство металлизованных окатышей
- 2.4 Процессы восстановления в доменной печи
- 3 Образование чугуна и его свойства
- 3.1 Интенсификация доменной плавки
- 3.1.1 Нагрев дутья
- 3.1.2 Обогащение дутья кислородом
- 3.1.3 Водяной пар в дутье
- 3.1.4 Вдувание углеродсодержащих веществ в доменную печь
- 3.2 Профиль доменной печи
- 3.2.1 Общее понятие о профиле
- 3.2.2 Основные размеры профиля и его составные части
- 3.1. Производство стали в конвертерах.
- 3.1.1 Бессемеровский процесс.
- 3.1.2 Томасовский процесс.
- 3.1.3 Кислородно-конвертерный процесс.
- 3.3 Производство стали в мартеновских печах.
- 3.4 Производство стали в электрических печах.
- 3.5 Новые методы производства и обработки стали.
- 4 Ферросплавы
- 4.1 Введение
- 4.2 Сырые материалы
- 4.2.1 Требования к рудам и их выбор
- 4.2.2 Восстановители
- 4.2.3 Железосодержащие материалы
- 4.2.4 Флюсы
- 4.3 Основные элементы конструкции рвп
- 5 Технический (металлургический) кремний
- 5.1 Особенности процесса карботермического восстановления кремния в горне электропечи
- 5.1.1 Общие положения
- 5.1.2. Влияние температуры предварительного нагрева шихты на химизм карботермического восстановления кремнезема
- 5.1.3. Схема технологических зон горна электропечи
- 5.1.4 Влияние примесей шихты на состав технического кремния
- 5.2 Ферросилиций
- 5.2.1 Физико-химические основы получения ферросилиция.
- 5.2.2 Технология производства ферросилиция.
- 6 Сплавы марганца
- 6.1 Применение и состав сплавов марганца
- 6.2 Марганцевые руды и их подготовка к плавке
- 6.3 Производство сплавов марганца
- 6.3.1 Высокоуглеродистый ферромарганец.
- 6.3.2 Силикомарганец
- 6.3.3 Низко- и среднеуглеродистый ферромарганец.
- 6.3.4 Металлический марганец.
- 7 Общие сведения о рудах и концентратах олова
- 7.1 Требования, предъявляемые к рудам и концентратам
- 7.2 Минералы олова
- 7.3 Промышленные типы месторождений олова
- 7.4 Типы оловянных концентратов, поступающих в металлургический передел
- 7.5 Методы обогащения оловянных руд
- 7.6 Влияние типа и вещественного состава руд на их обогатимость
- 7.7 Обогащение россыпей и коренных руд олова
- 7.7.1 Обогащение оловосодержащих россыпей
- 7.7.2 Обогащение оловянных руд коренных месторождений
- 7.8 Доводка оловянных концентратов
- 7.9 Основы современной металлургии олова
- 7.10 Основы теории оловянной восстановительной плавки
- 7.10.1 Восстановление окиси олова и сопутствующих металлов в условиях оловянной плавки
- 7.10.2 Кинетика восстановления окислов металлов и скорость плавки
- 7.10.3 Шлаки оловянной восстановительной плавки
- 7.10.4 Плавка в электрических печах
- 7.10.5 Отечественная практика электроплавки оловянных концентратов
- 7.11 Схема рафинирования олова пирометаллургическим способом
- 8 Производство свинца
- 8.1 Введение
- 8.2 Руды и концентраты
- 8.3 Способы получения свинца
- 8.4 Шихта
- 8.4.1 Состав шихты
- 8.4.2 Приготовление шихты
- 8.4.3 Агломерирующий обжиг свинцовых концентратов
- 8.5 Теория шахтной восстановительной плавки
- 8.5.1 Общие сведения
- 8.5.2 Теоретические основы восстановления окислов металлов
- 8.5.3 Восстановительная способность печи и способы ее регулирования
- 8.5.4 Шлак свинцовой плавки
- 8.5.5 Штейн и шпейза
- 8.5.6 Шахтная восстановительная плавка
- 8.5.7 Топливо
- 8.5.8 Дутье
- 8.6 Реакционная плавка свинца
- 8.6.1 Теоретическая сущность процесса
- 8.6.2 Реакционная плавка в короткобарабанной печи
- 8.7 Электроплавка свинца
- 8.7.1 Реакционная электроплавка свинца
- 8.7.2 Восстановительная электроплавка свинца
- 9.1 Общие сведения и методы получения
- 9.2 Технологические свойства
- 9.3 Области применения
- 9.4 Характеристика рудного цинкового сырья
- 9.5 Основные способы извлечения цинка из сырья
- 9.6 Обжиг цинковых сульфидных концентратов
- 9.6.1 Цели и типы обжига
- 9.6.2 Химизм процессов обжига
- 9.6.3 Обжиг цинковых концентратов для выщелачивания
- 9.7 Химизм кислотно-основных взаимодействий при выщелачивании
- 9.8 У глетермическое восстановление цинка
- 9.8.1 Цели и типы восстановления
- 9.8.2 Химизм восстановления окисленных цинковых материалов
- 9.9 Вельцевание цинковых кеков, цинковистых шлаков и других материалов
- 9.10 Дистилляция цинка из агломерата
- 10 Производство меди и никеля
- 10.1 Сырье для производства меди и никеля. Вспомогательные материалы
- 10.1.1 Классификация рудного сырья
- 10.1.2 Медные руды
- 10.1.3 Никелевые руды
- 10.2 Электроплавка окисленных никелевых руд.
- 10.3 Электроплавка сульфидных медно-никелевых руд и концентратов
- 10.4 Конвертирование никелевых и медно-никелевых штейнов
- 10.4.1 Термодинамика основных реакций процесса
- 10.4.2 Конвертирование никелевых и медно-никелевых штейнов
- 10.5 Переработка медно-никелевого файнштейна
- 10.5.1 Разделение медно-никелевого файнштепна флотацией
- 10.5.2 Обжиг никелевого файнштейна и концентрата. Восстановительная электроплавка закиси никеля.
- 10.6 Восстановительная электроплавка закиси никеля
- 10.7 Способы получения меди из рудного сырья
- 11 Способы получения алюминия
- 11.1 Основы электролиза криолитоглиноземиых расплавов
- 11.2 Сырье и основные материалы
- 11.2.1 Основные минералы и руды алюминия
- 11.2.2 Фториды
- 11.2.3 Огнеупорные и теплоизоляционные материалы
- 11.2.4 Проводниковые материалы
- 11.3 Корректировка состава электролита
- 11.4 Выливка металла
- 11.5 Транспортно-технологическая схема цеха электролиза
- 11.6 Способы очистки отходящих газов