logo search
Vlasov_-_konspekt_lektsy_-_new

9.6.2 Химизм процессов обжига

Под химизмом процессов подразумевается совокупность химических превращений, происходящих в определенной последовательности в результате взаимодействия исходных веществ. Химизм процесса характеризуется первичными, промежуточными и конечными продуктами превращений. В соответствии с этим последовательные реакции делят на первичные, вторичные и т.д., а продукты этих реакций называют первичными, вторичными и т.д.

Итак, первичные реакции окисления сульфидов могут быть трех типов:

MeS + 2 02 = MeSO4 (8.1)

MeS + 1,5 О2 = МеО + SO2 (8.2)

MeS + 02 = Me0 + SO2 (8.3)

Вторичные реакции окисления сульфидов можно разделить на три типа: 1) реакции окисления низших оксидов металла и серы до высших (развитие окисления компонентов сульфида); 2) взаимодействие оксидов серы и металла (сульфатообразование); 3) взаимодействие оксидов металлов между собой и с кремнеземом (феррито- и силикатообразование).

Рассмотрим конкретные и наиболее важные для технологии превращения, происходящие при обжиге цинковых концентратов. Хотя технологические режимы охватывают узкие интервалы режимных параметров, рассмотрим химизм процессов в более широком диапазоне условий, чтобы представить последствия отклонения от принятых в практике режимов.

Сульфид цинка встречается в концентратах в двух модификациях: распространенная - сфалерит α-ZnS и более редкая — вюрцит β-ZnS. При нагреве переход α↔β происходит при 1020°С, при более низких температурах β -ZnS существует как метастабильный. Химизм окисления этих модификаций одинаков.

Выше отмечалось, что ZnS при атмосферном давлении не плавится, а при t >1200°C сублимирует. В природных ZnS всегда содержится изоморфная примесь Fe2+ (обычно в пределах 3-10 %) и микропримеси (Mn, Cd, Tl, Hg, In).

Установлено, что от температуры начала заметного окисления сфалерита и до 900°С первичным твердым продуктом окисления является ZnO. Следовательно, при t < 900-1000°С окисление ZnS идет по реакции

ZnS + 1,5 О2 = ZnO + S02. (8.4)

Однако при больших температурах обнаруживается возгонка материала при обжиге ZnS. Причем чем интенсивней окисление ZnS за счет повышения t и , тем больше дебаланс между убылью количества ZnS и прибылью количества ZnO в обжигаемых образцах. Это обусловлено протеканием окисления по реакции

ZnSтв+02 =Znnap +S02. (8.5)

Далее пары цинка окисляются. Реакция (8.5), вероятно, является суммарной и включает диссоциацию ZnS на Zn° и S2.

Изоморфное железо при окислении (Zn, Fe)S сразу образует ZnFe2O4. Феррит цинка, полученный при температуре меньше 1000°С, практически немагнитен и плохо растворим в растворах H2S04.

В окалине на зернах сфалерита сульфатная сера обнаруживается во внешней части, удаленной от поверхности сульфидного ядра. Это свидетельствует об образовании сульфатов цинка в результате взаимодействия ZnO с S03 (вторичные сульфаты). При этом образуются или ZnS04, или ZnO*2 ZnS04. На воздухе в изотермических условиях ZnSO4 устойчив до 670°С, a ZnO • 2 ZnS04 - до 760°С. При наличии в газовой фазе S03 эти сульфаты не диссоциируют и при более высоких температурах. Сульфатизации подвержен не только оксид цинка, но и феррит цинка, т.е. сульфатизация цинка снижает его ферритизацию. Таким образом, вторичные сульфаты цинка в зависимости от температуры и образуются по реакциям

ZnO + S03 = ZnSO4, ZnFe204 + SO3 = ZnS04 + Fe2O3 (8.6a)

или 3 ZnO + 2 SO3 = ZnO * 2 ZnSO4, (8.6б)

3 ZnFe2O4 + 2 S03 = ZnO*2ZnS04 + Fe203. (8.6в)

Ферритизация цинка возможна и в результате взаимодействия ZnO с Fe203, образовавшимся от окисления отдельных зерен сульфидов железа. Степень протекания тонкой ферритизации зависит от условий обжига: повышение температуры при обжиге и наличие сростков зерен ZnS и FeS2 способствуют ферритизации цинка.

Для гидрометаллургической переработки огарков имеет значение влияние условий обжига на растворимость феррита цинка. Чем мельче феррит, несовершенней его кристаллическая структура, неизометричны и пористы зерна, тем легче он поддается кислотному растворению.

Технологически опасны кислоторастворимые силикаты. В цинковом огарке таким силикатом является Zn2Si04.

В условиях КС образование Zn2Si04 при обжиге цинковых концентратов - результат наличия сростков ZnS с породообразующими минералами, спекания соударяющихся зерен. При высокотемпературном обжиге (t > 1000°C) частичная отгонка цинка в результате реакции (8.4) с последующей конденсацией окислившегося цинка на силикатных фазах способствует усилению образования Zn2 Si04. Аналогичным образом усиливается и ферритизация цинка.

В цинковых концентратах, кроме сфалерита, обычно содержатся в заметных количествах другие сульфиды: PbS, CuFeS2, FeS2.

Халькопирит претерпевает следующие превращения. В результате более быстрого окисления железа по сравнению с медью периферия зерен CuFeS, обедняется железом и превращается в борнит (медножелезный сульфид переменного состава, в котором меди больше, чем железа). В продуктах окисления CuFeS, содержатся Сu0 , Сu2О, СuО, CuFe2O4, CuSO4 и CuO·CuSO4. Реакции, приводящие к образованию этих продуктов, понятны в свете изложенного выше.

Пирит диссоциирует с образованием элементарной серы (окисляющейся в газовой фазе до S02 и SO3 и пирротина (FeS1 +x, где О < х < 0,38). Пирротин окисляется до Fe3О4 и далее до конечного продукта Fe2О3.

Из этого следует, что основные компоненты в огарке представлены следующими фазами; цинк в виде ZnO, ZnFe2O4, ZnSO4, ZnO·2ZnSO4, Zn3SiO4, ZnS; железо в виде Fe304Fe203; ZnFe304; свинец в виде PbSO4, PbO· PbSO4, 2PbO·PbSO4, РbО Pb2Si04 PbS; медь в виде CuFe,O4, CuSO4, CuO·CuSO4 Cu2S, борнита Cu2O и Cu0. Для достижения низких содержаний сульфидной серы в огарке неблагоприятно сочетание заметных количеств сульфидов меди и свинца в концентрате из-за образования легкоплавкой эвтектики PbS – Cu2S (борнит), у которой tпл =540°C.