4.7.2.2 Охлаждающие среды при закалке
При закалке, с одной стороны, надо охлаждать ускоренно, чтобы обеспечить критическую скорость охлаждения. С другой стороны, при ускоренном охлаждении возникают значительные термические, а также структурные напряжения. Термические напряжения возникают в зонах перепада температур в детали при ускоренном охлаждении: горячая часть детали имеет значительно больший объем, чем холодная, в месте сопряжения этих частей возникают значительные напряжения.
Структурные напряжения связаны с превращением аустенита в мартенсит, который имеет больший объем. Структурные напряжения неизбежны при закалке на мартенсит, но при ускоренном охлаждении они становятся особенно высокими из-за неодновременного прохождения мартенситного превращения в различных частях детали.
Как показывает С-диаграмма, быстрое охлаждение при закалке необходимо только в районе наименьшей устойчивости переохлажденного аустенита (~ 650-4000С). Выше и ниже охлаждение можно вести медленно. В связи с этим, можно изобразить идеальную кривую охлаждения (рис. 8.4) при закалке. Охлаждение по такой кривой обеспечивает качественную закалку без трещин и коробления. Медленное охлаждение особенно важно проводить, начиная с температур 300-2000С, ниже которых в большинстве сталей образуется мартенсит, хрупкая структура, где под действием внутренних напряжений наиболее вероятно образование трещин. Верхний температурный интервал на кривой охлаждения часто проводят на воздухе (делают подстуживание). Вторую и третью температурную зону обычно проходят в охлаждающей жидкости. В табл. 8.1 приведены скорости охлаждения небольших стальных образцов во II и III температурной зоне в различных охлаждающих средах. Холодная вода – дешевый и очень энергичный охладитель, но быстрое охлаждение в третьей зоне крайне нежелательно. Это главный недостаток воды как охлаждающей жидкости. Нагретая вода не улучшает, а теряет свою охлаждающую способность. Минеральное масло медленно охлаждает в мартенситном интервале (это его основной недостаток). Минеральное масло применяют, в основном, для легированных сталей, которые имеют низкую критическую скорость охлаждения.
В связи с тем, что нелегированная сталь имеет высокую критическую скорость, детали приходится закаливать в воде. Если деталь имеет сложную конфигурацию и значительное сечение, ее закаливать в воду нельзя, т.к это приводит к браку (трещины, коробление). Поэтому детали сложной конфигурации и больших сечений делают из легированных сталей, закаливаемых в масле.
В настоящее время разрабатываются новые охлаждающие среды, охлаждающую способность которых можно регулировать в широких пределах (водно-воздушные смеси, растворы полимеров и т.д.).
Инструментальные нелегированные стали охлаждают сначала в воде (где проходит II зона), а затем перебрасывают в масло (где проходит III зона).
Таблица 4.1
Скорость охлаждения стали в различных средах
№ п/п |
Закалочная среда | Скорость охлаждения, 0С/с в температурных интервалах | |
650-5500С | 300-2000С | ||
1 | Вода при 180С | ~ 600 | ~ 270 |
2 | Вода при 740С | ~ 30 | ~ 200 |
3 | 10%-ный раствор NaOH в воде при 180С | ~ 1200 | ~ 300 |
4 | Минеральное масло | 100-150 | 20-50 |
Рис. 4.11 Твердость стали после закалки в зависимости от содержания углерода
- Введение
- Лекция 1 кристаллическое строение металлов
- Металлический тип связи в кристаллах
- 1.2. Кристаллизация
- 1.3. Модифицирование сплавов
- 1.4. Форма кристаллических образований
- 1.5. Строение металлического слитка
- 1.6. Пластическая деформация и рекристаллизация
- 1.6.1 Упругая и пластическая деформация металлов
- 1.6.2 Наклеп (нагартовка) металлов.
- 1.6.3 Влияние нагрева на структуру и свойства деформированного металла
- 1.6.4 Холодная и горячая деформации
- Вопросы для самоконтроля
- Лекция 2. Теория сплавов
- 2.1 Виды взаимодействия компонентов в сплавах
- 2.2 Простейшие типы диаграмм состояния сплавов
- 1 Вариант (рис. 2.9).
- 2 Вариант диаграммы 3 типа
- 2.3 Связь между свойствами сплавов и типом диаграммы состояния.
- Вопросы для самоконтроля
- Лекция 3 железо и его сплавы.
- 3.1 Аллотропия железа.
- 3.2 Фазы в железо-углеродистых сплавах.
- 3.3 Структурные составляющие железо-углеродистых сплавов
- 3.4 Структура сталей в равновесном состоянии
- 3.5 Чугун.
- 3.5.1 Белый чугун.
- 3.5.2 Процесс графитизации
- 3.5..3 Серый чугун
- 3.5.4 Высокопрочный чугун (с шаровидным графитом)
- 3.5.5 Ковкий чугун
- Вопросы для самоконтроля
- Лекция 4 теория термической обработки стали
- 4.1 Превращения в стали при нагреве
- 4.2 Измельчение и рост аустенитного зерна при нагреве
- 4.3 Превращения в стали при охлаждении.
- 4.4 Перлитное превращение
- 4.5 Мартенситное превращение
- 4.6 Превращение мартенсита и остаточного аустенита при нагреве (отпуск стали)
- 4.7 Технология термической обработки стали
- 4.7.1 Отжиг
- 4.7.1.1 Отжиг I рода
- 4.7.1.2 Отжиг II-го рода (с фазовой перекристаллизацией)
- 4.7.2 Закалка
- 4.7.2.1 Выбор температуры закалки
- 4.7.2.2 Охлаждающие среды при закалке
- 4.7.2.3 Закаливаемость и прокаливаемость стали
- 4.7.2.4 Способы закалки
- 4.7.2.5 Закалка с обработкой стали холодом
- 4.7.3 Отпуск
- 4.7.4 Нормализация
- 4.8 Термомеханическая обработка (тмо)
- Вопросы для самоконтроля
- Лекция 5 Химико-термическая обработка
- 5.1 Цементация стали
- 5.2 Азотирование
- 5.3 Цианирование (нитроцементация)
- 5.4 Диффузионная металлизация и диффузионное насыщение другими элементами
- 5.5 Поверхностный наклеп
- Вопросы для самоконтроля
- Лекция 6 поверхностное упрочнение стали
- 6.1 Поверхностная закалка
- 6.2 Закалка твч
- 6.3 Закалка с газопламенным нагревом
- Вопросы для самоконтроля
- Содержание