13.2 Машины механического типа
В механических флотационных машинах аэрация пульпы осуществляется засасыванием воздуха из атмосферы мешалками различных конструкций. Эти машины представляют собой аппараты, у которых насыщение пульпы воздухом и перемешивание пульпы в камере осуществляет аэратор с вращающимся импеллером, всасывая необходимый для флотации воздух непосредственно из атмосферы. Основная масса воздушных пузырьков, образующаяся при этом, имеет диаметр 0,6 – 1 мм.
Ниболее широкое распространение получили механические флотационные машины конструкции «Механобр» (рис. 13.1).
Флотационная машина состоит из камеры вместимостью от 0,16 до 6,3 м3.
Обозначается ФМР – 6,3
где: ФМР – флотационная машина рудная; 6,3 – объем камеры.
Рис. 13.1 Механическая флотационная машина конструкции «Механобр»
1 - приемный карман; 2 – центральная труба; 3 – труба для засоса воздуха; 4 – шкив привода; 5 – подводящая труба; 6 – импеллер; 7 – блок аэратора; 8 – камера; 9 – диск статора; 10 – направляющие статора; 11 – вал.
Блок аэратора (рис. 13.2) состоит из вертикального вала с импеллером. Вал вращается внутри трубы.
Рис. 13.2 Конструкция блока аэратора (вид снизу)
Данные машины отличаются большой производительностью Q = 0,15 – 12 м3/мин.
Назначение импеллера:
При вращении ротора (импеллера) поток пульпы засасывает воздух, поступающий по центральной трубе. Лопатки импеллера перемешивают пульпу и воздух. Пульповоздушная смесь выбрасывается на лопатки статора.
Назначение статора:
Статор увеличивает количество засасываемого воздуха и способствует лучшей диспергации его. Отводящими лопатками отводит пульпу от импеллера вглубь камеры без образования завихрений и увеличивает расход воздуха в машине в 2-2,5 раза.
Статор предохраняет машину от заиливания.
Данная машина собирается из двухкамерных секций: первая – всасывающая, вторая – прямоточная.
Может собираться из звеньев или из всасывающей и нескольких прямоточных.
По конструктивным параметрам она находится на уровне лучших зарубежных образцов.
Преимущества машин механического типа:
- просты в обслуживании,
- просты в ремонте,
- просты в регулировке;
- весь приводной механизм с импеллером и статором собран в один блок, который быстро может быть заменен другим;
- применение радиального импеллера позволяет увеличить количество засасываемого воздуха в 2-4 раза без увеличения мощности электродвигателя;
- машины могут быть собраны из отдельных секций, что позволяет осуществить гибкую компоновку флотационных схем.
Недостатки машин механического типа:
- большой износ лопаток статора и сильные восходящие потоки пульпы вызывают излишнее бурление и нарушение процесса пенообразования, что имеет особенно большое значение при флотации руд с низким содержанием ценного компонента;
- увеличение зазора между лопатками статора и импеллера больше 8-10 мм приводит к снижению аэрации пульпы и производительности машины.
- Федеральное агентство по образованию
- 1.2 Обогащение, его цели и задачи
- 1.2.1 Экономическая целесообразность обогащения
- 1.2.2 Классификация руд
- Лекция 2. Классификация методов обогащения
- 2.1 Продукты и показатели обогащения
- Методы обогащения полезных ископаемых
- 2.3 Операции и процессы обогащения
- Лекция 3. Грохочение
- Процесс грохочения
- Гранулометрический состав руды и продуктов обогащения
- Виды операций грохочения
- 3.4 Эффективность грохочения
- Лекция 4. Аппараты для грохочения
- 4.1 Классификация грохотов
- 4.2 Колосниковые грохоты
- 4.3 Дуговые грохоты
- 4.4 Плоскокачающиеся грохоты
- 4.5 Полувибрационный (или гирационный) грохот
- 4.6 Вибрационные грохоты
- 4.7 Просеивающие поверхности
- Лекция 5. Дробление
- 5.1 Процесс дробления
- 5.2 Стадии и степень дробления
- 5.3 Способы дробления
- 5.4 Технология дробления
- Схемы дробления состоят из отдельных стадий дробления, включающих предварительное и поверочное грохочение.
- Лекция 6. Машины для дробления
- Классификация дробилок
- 6.2 Щековые дробилки
- Конусные дробилки
- Дробилки ударного действия
- Лекция 7. Измельчение
- 7.1 Процесс измельчения
- 7.2 Конструктивные особенности мельниц (шаровые, стержневые, самоизмельчения)
- 7.3 Скоростные режимы мельниц
- 7.4 Технология измельчения
- Лекция 8. Закономерности падения минеральных зерен
- 8.1 Закономерности свободного падения частиц
- 8.2 Универсальный метод определения конечной скорости движения частиц (метод Лященко)
- Размер частиц, , мм
- Лекция 9. Классификация
- 9.1 Процесс классификации
- 9.2 Спиральные классификаторы
- 9.3. Гидроциклоны
- 9.4. Гидравлические классификаторы
- Лекция 10. Гравитационный метод обогащения
- 10.1 Гравитационные процессы обогащения
- Процесс отсадки, отсадочные машины
- 10.3 Обогащение на концентрационных столах
- 10.4 Обогащение на шлюзах
- Обогащение на винтовых сепараторах
- 10.6 Обогащение в центробежных аппаратах
- Лекция 11. Флотация
- Область применения флотационного метода обогащения
- Элементарный акт флотации
- Распределение операций флотации по камерам флотационных машин
- Лекция 12. Флотационные реагенты
- 12.1 Классификация и назначение флотационных реагентов
- 12.2 Собиратели
- 12.3 Пенообразователи
- 12.4 Депрессоры
- 12.5 Активаторы
- 12.6 Регуляторы среды
- Лекция 13. Флотационные машины
- 13.1 Классификация флотационных машин
- 13.2 Машины механического типа
- 13.3 Пневмомеханические машины
- 13.4 Пневматические машины
- Лекция 14. Магнитный, электрический и специальные методы обогащения
- 14.1 Теоретические основы процесса магнитной сепарации
- 14.1.1 Магнитные поля сепараторов
- 14.1.2 Магнитные сепараторы
- 14.2 Электрические методы обогащения
- 14.3 Специальные методы обогащения
- Лекция 15. Обезвоживание продуктов обогащения
- 15.1 Операции сгущения, аппаратурное оформление
- 15.2 Фильтрование продуктов обогащения
- 15.3 Сушка продуктов обогащения
- Лекция 16. Опробование и контроль процессов обогащения
- Виды и масса проб
- 16.2 Технологический и товарный баланс продуктов обогащения
- Библиографический список