4.5.3 Конденсаторы
В конденсаторах за счёт отвода теплоты в окружающую среду (потоком наружного воздуха или воды) происходит переход паров хладагента в сжиженное состояние при определённых значениях рк и tк.
Воздушные конденсаторы применяются во всех холодильных установках рефрижераторного подвижного состава и в стационарных установках малой и средней производительности. Наглядный пример такой холодильной машины – бытовой холодильник с отводом теплоты в режиме свободной конвекции. Конденсатор с принудительным охлаждением (рисунок 4.24) представляет собой систему параллельно включённых труб, объединённых коллекторами на входе (раздающим) и выходе (собирающим). Запитываемые от них трубы (алюминиевые, медные или стальные) имеют, как правило, оребрение с целью интенсификации теплопередачи.
Конденсаторы с водяным охлаждением получили наибольшее распространение в стационарных установках средней и большой производительности. На железнодорожном транспорте такие конденсаторы применяли в аммиачных паровых компрессионных холодильных машинах с централизованной выработкой холода. Типичный кожухотрубный конденсатор с горизонтальным расположением охлаждающих труб представлен на рисунке 4.25. Пары хладагента подаются сверху в пространство корпуса между кожухом и трубами, внутри которых протекает вода. Находят применение конденсаторы других типов: вертикальные кожухотрубные, оросительные и т. д.
Рисунок 4.24 – Схема воздушного конденсатора
Рисунок 4.25 – Кожухотрубный конденсатор горизонтального типа
Расчёт конденсаторов сводится, в зависимости от задачи, к определению теплопередающей поверхности F, м2, расхода охлаждающей воды Gв, кг/с, или воздуха Vв, м3/с:
; ; ,
где Qк – тепловая нагрузка на конденсатор, кВт; k – коэффициент теплопередачи, кВт/(м2К); t – средняя разность температур конденсирующегося хладагента и охлаждающей среды (воды или воздуха); св – удельная теплоёмкость воды, св = 4.19 кДж/(кг°С); t1 и t2 – температура воды на входе и выходе из конденсатора, °С; в – плотность воздуха, в = 1.2 кг/ кг/м3; i1 и i2 – удельное теплосодержание воздуха на входе и выходе конденсатора.
- Глава 4 Основы теплоэнергетики
- 4.1 Основы термодинамики
- 4.1.1 Термодинамическая система
- 4.1.2 Механические и тепловые взаимодействия
- 4.1.3 Первый закон термодинамики
- 4.1.4 Второй закон термодинамики
- 4.2 Основы теплопереноса
- 4.2.1 Механизмы переноса теплоты
- 4.2.2 Теплопроводность
- 4.2.3 Конвективный теплообмен
- 4.2.4 Лучистый теплообмен
- 4.2.5 Теплопередача
- 4.3 Способы получения искусственного холода
- 4.3.1 Изменение агрегатного состояния охладителей
- 4.3.2 Получение холода с помощью охладителей
- 4.3.3 Хладагенты и холодоносители
- 4.3.4 Холодильные машины
- 4.4 Термодинамические основы работы холодильных машин
- 4.4.1 Теоретический цикл Карно в идеальной паровой компрессионной холодильной машине
- 1, 2, 3, 4 – Точки характеризующие термодинамические процессы теоретического цикла Карно в элементах идеальной холодильной машины по т, s –диаграмме
- 4.4.2 Реальная одноступенчатая паровая компрессионная холодильная машина
- 4.4.3 Реальная двухступенчатая паровая компрессионная холодильная машина
- 4.4.4 Воздушная компрессионная холодильная машина
- 4.4.5 Абсорбционная холодильная машина
- 4.4.6 Построение и расчёт холодильного цикла одноступенчатой паровой компрессионной холодильной машины
- 4.5 Основные элементы транспортных холодильных установок
- 4.5.1 Компрессоры
- 4.5.2 Особенности поршневых компрессоров
- 4.5.3 Конденсаторы
- 4.5.4 Испарители, переохладители и вспомогательные аппараты
- 4.6 Автоматизация работы холодильных установок
- 4.6.1 Системы автоматизации работы холодильных машин
- 4.6.2 Автоматизация работы испарителей
- 4.6.3 Автоматическое поддержание температурного режима в грузовых помещениях