Геотермальная энергия
Геотермальная энергия обязана своим происхождением горячей магме, которая проникает из недр земли и подходит близко к поверхности. Источники глубинной теплоты расположены во многих частях земного шара, как правило, вблизи районов геологической активности. Геотермальные месторождения можно подразделить на следующие виды:
1) гидротермальные системы (на глубине до 3 км). Они могут быть: с преобладанием сухого пара, с преобладанием горячей воды;
2) системы аномально высокого давления (на глубине до 10 км);
3) сухие горячие горные породы (на глубине до 10 км). Наиболее эффективны и освоены такие геотермальные месторождения, в которых горячий сухой пар выходит на поверхность земли. В настоящее время широкое применение находят месторождения, в которых преобладает горячая вода.
Магма нагревает вышележащую пористую породу за счет конвекции. Пористая (водоносная) порода, если она сверху покрыта плотной водонепроницаемой породой, и является источником геотермальной энергии. Если в этих местах возникают трещины в земной коре, то нагретая вода вытесняется вверх. По мере ее поднятия к поверхности земли, давление воды падает, и она превращается в пар. Если начальная температура воды и ее давление достаточно высоки, то в пар превращается вся вода. Это месторождение сухого пара. Однако в большинстве районов мира извлекаемые геотермальные флюиды представляют собой смесь пара и горячей воды (в сущности, горячий рассол, так как геотермальные флюиды содержат большое количество растворенных химических веществ).
Геотермальные системы аномально высокого давления в настоящее время активно изучаются. Для систем подобного типа характерно то, что горячая вода "заперта" в обширных, глубоко залегающих осадочных бассейнах: температура воды обычно не достигает и 200°С, однако давление внутри резервуара колеблется от 500 до 900 МПа.
Чтобы приступить к массовому освоению этого вида энергоресурсов, необходимо сначала решить несколько технологических и экологических проблем. Большая часть затрат на освоение геотермальной энергии связана с бурением скважин диаметром до 60 см. Высокое содержание солей в геотермальной воде и паре приводит к тому, что через несколько лет работы происходит закупорка этих скважин и необходимо их новое бурение. По большинству скважин поступает не пар, а горячая вода, что уменьшает КПД выработки электроэнергии. Отбор теплоты из геотермального источника происходит обычно быстрее, чем ее возмещение за счет естественного процесса. В результате со временем температура пара или горячей воды начинает снижаться, уменьшается также их поступление на поверхность. Это означает, что наступает исчерпание источника геотермальной энергии.
В РФ также ведутся работы по использованию геотермальной энергии. Источники этой энергии у нас имеются на Кавказе, на Камчатке, на острове Кунашир, на Сахалине и в ряде мест Забайкалья. Первая ГеоТЭС в РФ была построена на Камчатке в 1967 г. мощностью 5 МВт. Начато изготовление комплектных ГеоТЭС мощностью 2,0; 2,5 и 20 МВт для Камчатской и Сахалинской областей.
- Основные термины и понятия
- Понятие энергетического аудита
- 1.1 Задачи энергоаудита
- Правовые основы энергоаудита
- Энергоаудитор должен отвечать следующим требованиям:
- 6. Для аккредитации необходимо предоставить:
- Общие этапы энергоаудита и их содержание
- Виды энергетических ресурсов и направления их использования
- Органическое топливо
- Образование ископаемого топлива
- Классификация и характеристики органического топлива
- Природный газ
- Состав и применение природных газов показан на рисунке 2.1.
- Ядерное топливо
- Ядерное деление
- Реакторы - размножители на быстрых нейтронах
- Нейтронах
- Термоядерный синтез
- Геофизическая энергия
- Гидроэнергия
- Ветровая энергия
- Геотермальная энергия
- Солнечная энергия
- Топливно-энергетическая промышленность России
- Топливно-энергетический комплекс
- Нефтяная промышленность
- Газовая промышленность
- Транспорт газа
- Угольная промышленность
- Электроэнергетика
- Общие сведения
- Тепловые электростанции
- Тепловые конденсационные электрические станции
- Теплоэлектроцентрали
- Атомные электростанции
- Гидроэлектростанции (гэс, гаэс, пэс)
- Самая большая в Европе Волжская гидроэлектростанция, построена в 1962 году Самая мощная электростанция в мире – Итайпу (Бразилия) - гэс 12600 мВт.
- Альтернативные источники электроэнергии
- Геотермальная электростанция
- Солнечная электростанция
- Ветровая электростанция
- Мини и микро гэс
- Электрические сети
- Тепловая энергетика
- Котельные Принципиальная схема котельной установки
- Тепловой баланс и кпд котла
- Системы теплоснабжения
- Тепловые сети
- Характеристика потребителей топливно-энергетических ресурсов
- Промышленные предприятия
- Характеристика систем энергоснабжения промышленных предприятий
- Предприятия черной металлургии
- Предприятия цветной металлургии
- Предприятия химической промышленности
- Предприятия нефтеперерабатывающей и нефтехимической промышленности
- Предприятия машиностроительной промышленности
- Предприятия целлюлозно-бумажной промышленности
- Предприятия текстильной и легкой промышленности
- Предприятия строительной промышленности
- Предприятия пищевой промышленности
- Б юджетные учреждения
- Транспорт
- Сельское хозяйство
- Коммунально-бытовое хозяйство
- Энергетические балансы предприятий
- Понятие и назначение энергетических балансов
- Виды энергетических балансов
- Методы составления электробалансов
- Электробалансы электроприводов и энергетических установок
- Цеховые и общезаводские электробалансы
- Основные направления энергосбережения
- Энергосбережение в промышленности
- Показатели эффективности использования энергетических ресурсов в энергопотребляющих установках
- Электротермические установки
- 8.1.3 Электросварочные установки
- 8.1.4 Электролизные установки
- 8.1.5 Системы снабжения потребителей сжатым воздухом
- Насосные установки
- Вентиляционные установки
- Станочное оборудование
- Кузнечно-прессовое оборудование
- Энергосбережение в бюджетной сфере
- Системы освещения
- Системы отопления
- Снижение тепловых потерь через ограждающие конструкции
- Оптимизация системы отопления здания
- 8.2.3 Системы холодного и горячего водоснабжения
- Использование вторичных энергетических ресурсов
- Классификация и основные направления использования вэр
- Использование тепловых вэр
- Способы и оборудование для утилизации сбросной теплоты
- Упрощенная модель использования тепловых вэр
- Потенциальные возможности утилизации сбросной теплоты
- Основные утилизационные установки, использующие вэр
- Котлы утилизаторы
- Экономайзеры и воздухоподогреватели
- Рекуператоры
- Регенераторы
- Тепловые насосы
- Оценка эффективности использования вэр
- Расчет эффективности энергосберегающих мероприятий
- Основные теоретические положения по оценке эффективностиинвестиционных проектов
- Определение ценности проекта
- Понятие дисконтирования
- Расчет показателей достоинства проекта
- Технико-экономическая оценка энергосберегающих
- Примеры технико-экономической оценки энергосберегающих мероприятий