Гидроэлектростанции (гэс, гаэс, пэс)
Гидро-, гидроаккумулирующие и приливные электростанции. На электростанциях этого типа производится 21% всей российской ЭЭ (общемировой показатель - 20%, мировой лидер Норвегия - 95% ЭЭ на ГЭС).
К крупным ГЭС относятся электростанции мощностью свыше 30 МВт.
ГЭС преобразует энергию водного потока в электрическую энергию. Важнейшая часть ГЭС - плотина, она задерживает воду в водохранилище и создает необходимый ее напор. Вода под напором вращает турбину, которая приводит в движение ротор гидрогенератора, вырабатывающего электрический ток. В проектировании, строительстве и эксплуатации ГЭС РФ занимает передовые позиции в мире. В 1993 г. на ГЭС вырабатывалось около 16% электроэнергии. Значение ГЭС для всей энергетики страны определяется следующими технологическими и экономическими особенностями:
использованием ими непрерывно возобновляемых природных источников энергии рек;
исключительно высоким КПД преобразования гидравлической энергии в электрическую (свыше 90% );
полной автоматизацией процессов производства электроэнергии, сводящей до минимума трудовые затраты в процессе эксплуатации ГЭС;
высокой долговечностью сооружений гидроузлов, простотой и надежностью их оборудования;
большой маневренностью, т.е. способностью практически мгновенно и без потерь производить смены режимов работы, быстро принимать и сбрасывать нагрузки, покрывать кратковременные пики нагрузок, регулировать частоту тока в энергосистеме, а также выполнять в ней функции аварийного, резерва.
Мощность ГЭС можно определить по выражению (кВт):
(4.10)
где Q - расход воды, м3/ с (мощность потока воды, протекающего через некоторое сечение - створ);
Н - напор, м (разность уровней верхнего и нижнего бассейнов).
Для увеличения напора строят искусственные гидротехнические сооружения. На равнинных реках напор создается с помощью плотины; в горных местностях строят специальные обводные каналы, называемые деривационными. На равнинных реках ГЭС с плотинной схемой создания напора разделяются на два типа: русловые и приплотинные. На ГЭС с напором до 25-36 м здание станции, как и плотина, воспринимает напор и располагается в русле реки. Такие ГЭС называются русловыми.
При напорах более 30 м здание - ГЭС помещается за плотиной. Такие ГЭС называются приплотинными, на них весь напор воспринимается плотиной. В зависимости от величины напора и мощности на ГЭС используют различные типы гидротурбин. На равнинных реках с напором до 20 м широко применяются горизонтальные капсульные гидроагрегаты мощностью до 45МВт. На ГЭС с напором до 80 м успешно работают поворотно-лопастные и пропеллерные турбины мощностью до 200 МВт. При напорах более 80 м применяются радиально - осевые турбины, мощности этих турбин 240, 300, 500 и 640 МВт.
ГЭС выгодно строить на горных реках с большим падением и расходом воды. Российские же ГЭС в большинстве своем равнинные, а следовательно, низконапорные и малоэффективные. Наиболее крупными ГЭС в РФ являются: Саяно-Шушенская (р.Енисей) - 6400 МВт; Красноярская (р.Енисей) - 6000 МВт; Устъ-Илимская (р.Ангара) - 4320 МВт; Братская (р.Ангара) - 4100 МВт; Волжская (р.Волга) - 2541 МВт.
Исходя из принципа комплексного использования водных ресурсов, освоение гидроэнергетических ресурсов в РФ, осуществляют, как правило, путем строительства каскадов ГЭС. Наиболее крупные каскады: на Волге - 11 ГЭС, на Иртыше - 4, на Ангаре - 5, на Енисее – 7, на Каме - 4.
Рисунок 4.8
- Основные термины и понятия
- Понятие энергетического аудита
- 1.1 Задачи энергоаудита
- Правовые основы энергоаудита
- Энергоаудитор должен отвечать следующим требованиям:
- 6. Для аккредитации необходимо предоставить:
- Общие этапы энергоаудита и их содержание
- Виды энергетических ресурсов и направления их использования
- Органическое топливо
- Образование ископаемого топлива
- Классификация и характеристики органического топлива
- Природный газ
- Состав и применение природных газов показан на рисунке 2.1.
- Ядерное топливо
- Ядерное деление
- Реакторы - размножители на быстрых нейтронах
- Нейтронах
- Термоядерный синтез
- Геофизическая энергия
- Гидроэнергия
- Ветровая энергия
- Геотермальная энергия
- Солнечная энергия
- Топливно-энергетическая промышленность России
- Топливно-энергетический комплекс
- Нефтяная промышленность
- Газовая промышленность
- Транспорт газа
- Угольная промышленность
- Электроэнергетика
- Общие сведения
- Тепловые электростанции
- Тепловые конденсационные электрические станции
- Теплоэлектроцентрали
- Атомные электростанции
- Гидроэлектростанции (гэс, гаэс, пэс)
- Самая большая в Европе Волжская гидроэлектростанция, построена в 1962 году Самая мощная электростанция в мире – Итайпу (Бразилия) - гэс 12600 мВт.
- Альтернативные источники электроэнергии
- Геотермальная электростанция
- Солнечная электростанция
- Ветровая электростанция
- Мини и микро гэс
- Электрические сети
- Тепловая энергетика
- Котельные Принципиальная схема котельной установки
- Тепловой баланс и кпд котла
- Системы теплоснабжения
- Тепловые сети
- Характеристика потребителей топливно-энергетических ресурсов
- Промышленные предприятия
- Характеристика систем энергоснабжения промышленных предприятий
- Предприятия черной металлургии
- Предприятия цветной металлургии
- Предприятия химической промышленности
- Предприятия нефтеперерабатывающей и нефтехимической промышленности
- Предприятия машиностроительной промышленности
- Предприятия целлюлозно-бумажной промышленности
- Предприятия текстильной и легкой промышленности
- Предприятия строительной промышленности
- Предприятия пищевой промышленности
- Б юджетные учреждения
- Транспорт
- Сельское хозяйство
- Коммунально-бытовое хозяйство
- Энергетические балансы предприятий
- Понятие и назначение энергетических балансов
- Виды энергетических балансов
- Методы составления электробалансов
- Электробалансы электроприводов и энергетических установок
- Цеховые и общезаводские электробалансы
- Основные направления энергосбережения
- Энергосбережение в промышленности
- Показатели эффективности использования энергетических ресурсов в энергопотребляющих установках
- Электротермические установки
- 8.1.3 Электросварочные установки
- 8.1.4 Электролизные установки
- 8.1.5 Системы снабжения потребителей сжатым воздухом
- Насосные установки
- Вентиляционные установки
- Станочное оборудование
- Кузнечно-прессовое оборудование
- Энергосбережение в бюджетной сфере
- Системы освещения
- Системы отопления
- Снижение тепловых потерь через ограждающие конструкции
- Оптимизация системы отопления здания
- 8.2.3 Системы холодного и горячего водоснабжения
- Использование вторичных энергетических ресурсов
- Классификация и основные направления использования вэр
- Использование тепловых вэр
- Способы и оборудование для утилизации сбросной теплоты
- Упрощенная модель использования тепловых вэр
- Потенциальные возможности утилизации сбросной теплоты
- Основные утилизационные установки, использующие вэр
- Котлы утилизаторы
- Экономайзеры и воздухоподогреватели
- Рекуператоры
- Регенераторы
- Тепловые насосы
- Оценка эффективности использования вэр
- Расчет эффективности энергосберегающих мероприятий
- Основные теоретические положения по оценке эффективностиинвестиционных проектов
- Определение ценности проекта
- Понятие дисконтирования
- Расчет показателей достоинства проекта
- Технико-экономическая оценка энергосберегающих
- Примеры технико-экономической оценки энергосберегающих мероприятий