8.5. Термопластичные композиционные материалы
Непрерывноармированные термопласты. Армирование термопластов предполагает принципиально иной характер изменения их технических свойств благодаря возможности обеспечения объема армирования не только на традиционном для отверждающихся композиционных материалов уровне, равном 50 – 60 %, но и существенном превышении данного показателя в высоко - и предельноармированных (до 100 %) термопластах.
Непрерывно армированные термопласты с содержанием армирующей фазы до 50 – 70 % объемных обладают рядом технологических и конструкторских преимуществ перед армированными реактопластами.
Технологическими преимуществами являются: неограниченная жизнеспособность сырья и полуфабрикатов, резкое сокращение циклов формования изделий из-за ненадобности отвержения связующего, возможность применения прогрессивных технологических способов производства (гибка, штамповка, химическая и диффузионная сварка), высокая ремонтопригодность, возможность утилизации отходов.
К конструкторским преимуществам относятся: низкий уровень остаточных напряжений, лучшие демпфирующие свойства и ударная вязкость, высокие электроизоляционные свойства, повышенные водо -, крио -, огнестойкость и т.д.
Основными недостатками в технологии производства непрерывно армированных термопластов является сложность пропитки волокнистых армирующих элементов (нитей, жгутов, тканей) высокомолекулярными термопластичными связующими. Для снижения вязкости используют такие технологические приемы, как пропитка растворами полимеров, повышение температуры расплава и снижение молекулярной массы полимеров. Проблему пропитки наполнителей решают повышением их смачивающей способности модификацией поверхности волокон (окисление, аппретирование и т.п.).
Решение проблемы пропитки достигается также твердофазным совмещением волокон (нитей) с термопластами в виде порошка, пленки или волокон. Недостатками твердофазного совмещения в случае использования порошков являются неравномерность их распределения и плохая дислокация в объеме полуфабрикатов. Недостатком пленочного варианта является неплотное прилегание матричной пленки к армирующей подложке при отсутствии адгезионного взаимодействия между ними.
Применение матричных термопластичных волокон позволяет избежать указанных недостатков при оптимальном чередовании непрерывных армирующих и матричных волокон. Термопласт оказывается еще до плавления равномерно распределенным по сечению полуфабриката и максимально приближенным к поверхности армирующих волокон.
Высокоармированные термопласты (ВАТП) – матричные композиционные материалы, в которых объемное содержание профилированных армирующих волокон составляет от 70 - 75 до 95 – 96 % для однонаправленных материалов и от 50 до 80 % – для ортотропных материалов при коэффициентах реализации механических свойств волокон не ниже 0,88 - 0,92 от исходных значений.
При формировании ВАТП используются значительно меньшие объемы связующего, при этом монолитизация осуществляется вытеснением пор из объема пластика за счет перепрофилирования (смятия) волокон.
Создание ВАТП включает три этапа:
– получение препрега с дозированным (5 – 30 %) количеством связующего в результате однократной пропитки. Пористость препрега после удаления растворителя должна находиться в интервале от 8 до 15 %;
– формирование из препрега беспористых высокоармированных монослоев. Ликвацию пористости препрега осуществляют перепрофилированием армирующих волокон, при этом волокнообразующий полимер и матрица должны деформироваться совместно;
– формирование под действием температуры и давления ВАТП из беспористых монослоев.
ВАТП многофункциональны и их применение эффективно вследствие высоких механических, теплофизических, диэлектрических и др. свойств компонентов. ВАТП могут получаться с использованием любых армирующих волокон.
Предельноармированные органоволокниты (ПАОВ) – органопластики с объемным содержанием органических волокон, равным 96 – 100 %. Способы получения таких материалов основаны на перепрофилировании (смятии) волокон. Перепрофилирование волокон с исходным (обычно круглым) сечением осуществляется в процессе поперечного сжатия препрега или заготовки изделия, в которой волокна уложены хаотически или в соответствии с заданной схемой армирования.
Монолитность ПАОВ достигается непосредственным соединением контактирующих поверхностей перепрофилированных волокон с помощью сварки, диффузионным взаимодействием или комбинированным соединением.
Отличительной особенностью ПАОВ является полное отсутствие матричной фазы или ее дискретное содержание в зонах неполного прилегания волокон. Другим важным свойством ПАОВ является то, что 96 – 98 % объема материала составляет высокоориентированный линейный полимер.
Материалы применяются для производства изделий, работающих при значительных растягивающих напряжениях (корпуса и емкости, работающие под внутренним давлением), а также в мало - и средненагруженных изделиях различного назначения.
По функциональному назначению можно выделить три группы ПАОВ: материалы на основе высокопрочных арамидных волокон; на основе волокон из нетугоплавких и тугоплавких полимеров (полиамидных и др.); на основе полиэтилентерефталатных, полиэтиленовых, полипропиленовых и др. волокон.
По виду сварочной монолитизации ПАОВ подразделяются на диффузионно - и химически сварные, а также с комплексной матрично-сварочной монолитизацией.
- Министерство образования и науки Российской Федерации
- Предисловие
- Введение
- Часть 1. Современные представления о строении различных групп материалов
- Глава 1. Основные различия в свойствах групп материалов
- Типы химической и физической связей в материалах
- В материалах:
- 1.2. Материалы с различным типом химической связи
- 1.2.1. Металлы и сплавы (металлический тип связи)
- 1.2.2. Полимеры (ковалентный и молекулярно - ковалентный типы связи)
- 1.2.3. Керамика (ковалентный и ионный типы связи)
- 1.2.4. Карбиды и интерметаллиды (ковалентно - металлический тип связи)
- 1.2.5. Композиционные материалы (смешанный тип связей)
- Pис. 1.2. Схематическое представление вклада разных типов связи в материалах
- Вопросы для самопроверки
- Часть 2. Металлические материалы
- Глава 2. Строение и свойства металлов и сплавов
- 2.1. Кристаллическое строение металлов и сплавов
- Кристаллические структуры переходных металлов 4-го периода*
- Внедрения; б – твердый раствора замещения со статистическим распределением атомов; в – упорядоченный твердый раствор замещения
- Из сплавов (деформируемых)
- 2.2. Несовершенства кристаллической структуры
- Линейные и точечные несовершенства кристаллической структуры
- 2.3. Основные свойства и характеристики металлов и сплавов
- Характеристики механических свойств
- Характеристики физических свойств
- Характеристики химических свойств
- Характеристики технологических свойств.
- 2.4. Пластическая деформация
- Пластической деформации [с.В. Грачев, в.Р. Бараз и др.]
- В зависимости от степени холодной деформации: ρ – удельное электросопротивление; Ηс – коэрцитивная сила; μ – магнитная проницаемость;
- Температуры отжига холоднодеформированного металла
- Температура начала рекристаллизации, интервал температур рекристаллизационного отжига и горячей обработки давлением
- 2.5. Термическая обработка
- Технологические параметры термообработки
- Время нагрева τн, температура выдержки tв, время выдержки τ в, скорость охлаждения V охл
- Скорости охлаждения при различных видах термической обработки
- Скорость охлаждения при каждом виде термообработки предопределяет равновесность или неравновесность получаемых продуктов фазовых превращений.
- И отпуске (б). Исходное состояние: пересыщенный при закалке твердый раствор (а); мартенсит углеродистый (б)
- Термообработка – отжиг
- Типы отжигов для сплавов разного состава
- Отжиги первого рода
- Типы отжигов первого рода
- Отжиги второго рода
- Отжиги второго рода. Отжиги углеродистых сталей
- Общепринятые обозначения линий и критических точек на диаграмме железо-цементит
- Эвтектоид носит название перлит (п). Перлит – это структура, состоящая из двух фаз: феррита и цементита, частицы которых имеют пластинчатое строение (рис. 2.22, а).
- Фазовый состав сталей после отжига в зависимости от содержания углерода
- Технологические параметры специальных отжигов сталей
- Микроструктура пластинчатого (б) и сферического(зернистого) (в) цементита
- Для доэвтектоидной стали с 0,45 % углерода; скорости охлаждения: V 1 – с печью; v2 – на воздухе; v3 – в масле; v4 – в воде
- Продукты диффузионного распада переохлажденного аустенита
- Перлит может быть получен при охлаждении с печью, сорбит – при охлаждении на воздухе, а троостит–при больших скоростях охлаждения и даже при закалке.
- Упрочняющая термическая обработка: закалка и старение
- От температуры (а) и времени (б) старения: t1 ‹ t2 ‹ t3; о – максимум твердости;
- Закалка и отпуск сталей
- Закалка сталей на мартенсит
- Технология закалки
- Образца(Vц), перлитную структуру на поверхности(Vп) – мартенситную
- Отпуск сталей
- От температуры отпуска (и.И. Новиков) Виды отпуска и применение
- Виды отпуска и структуры сталей
- 2.6. Термомеханическая обработка сталей
- Рекристаллизации
- 2.7. Поверхностная обработка сталей и сплавов
- Химико-термическая обработка сплавов.
- Хто с диффузионным насыщением углеродом и азотом
- Нитроцементация (азотонауглероживание)
- Параметры процессов хто, характеристики слоя и свойства сталей
- Химико-термическая обработка с диффузионным насыщением металлами (диффузионная металлизация)
- Поверхностная закалка сталей
- Поверхностная лазерная обработка
- Виды поверхностной лазерной обработки
- Поверхностное пластическое деформирование
- Способы ппд
- 2.8. Обеспечение служебных характеристик и повышение технико-экономической эффективности применения металлических материалов
- 2.8.1. Статическая прочность сплавов
- Обеспечение статической прочности сплавов композиционных и гетерофазных материалов
- 2.8.2. Циклическая прочность
- Факторы, влияющие на предел выносливости
- 2.8.3. Контактная выносливость
- Способы обеспечения контактной выносливости:
- Коэффициент вязкости разрушения различных материалов
- 2.8.5. Износостойкость
- Стали и сплавы для работы в контакте с рабочей средой
- Твердость и модуль упругости карбидов
- 2.8.6. Жаропрочность
- 2.8.7. Термостойкость
- 2.8.8. Поверхностная стойкость
- Обеспечение жаростойкости
- Вопросы для самопроверки
- Глава 3. Сплавы на основе железа
- 3.1. Машиностроительные конструкционные стали
- 3.1.1. Классификация конструкционных сталей
- Классификация сталей по химическому составу
- Классификация и маркировка в зависимости от качества стали
- 3.1.2. Углеродистые стали
- 3.1.3. Легированные стали
- Влияние легирующих элементов на структуру и свойства сталей
- Влияние легирующих элементов на феррит
- Влияние легирующих элементов на аустенит и мартенсит
- Цементуемые легированные стали
- Улучшаемые легированные стали
- Механические свойства некоторых улучшаемых сталей
- Критический диаметр легированных сталей
- Характеристика высокопрочных сталей
- Комплекс механических свойств среднеуглеродистых легированных сталей, упрочняемых закалкой с последующим низким отпуском
- Н18к9м5т от температуры старения
- Механические свойства мартенситно-стареющих сталей системы Fe–Ni–Co–Mo–Ti
- 3.1.4. Стали для подшипников качения
- Требования к подшипниковым сталям и пути обеспечения необходимых свойств
- Термическая обработка подшипниковых сталей типа шх
- 3.1.5. Стали рессорно-пружинные
- Предел текучести рессорно-пружинных сталей общего назначения*
- Марки и применение рессорно-пружинных сталей
- 3. 2. Стали специального назначения
- 3.2.1. Коррозионностойкие стали
- 3.2.2. Жаростойкие стали
- 3.2.3. Жаропрочные стали
- Двс и пути их обеспечения
- Условия эксплуатации:
- 3.3. Чугуны
- Химический состав конструкционных чугунов
- Форма графита и названия чугунов
- Зависимость механических свойств чугунов от формы графита и структуры металлической части
- 3.3.1. Серые чугуны
- Применение серых чугунов
- 3.3.2. Высокопрочные чугуны
- Применение высокопрочных чугунов
- Применение чугунов с вермикулярным графитом
- 3.3.4.Ковкие чугуны
- Применение ковких чугунов
- Применение специальных чугунов
- 3.4. Порошковые конструкционные и легированные стали
- 3.4.1. Классификация порошковых сталей
- Марки и применение пористых конструкционных материалов
- 3.4.2. Применение порошковых сталей
- Вопросы для самопроверки
- Глава 4. Цветные металлы и сплавы
- 4.1. Алюминиевые сплавы
- Удельная прочность конструкционных сплавов
- 4.1.1. Классификация и маркировка алюминиевых сплавов
- Соответственно
- Условные обозначения видов термической обработки деформируемых сплавов
- 4.1.2. Деформируемые сплавы
- Разрыву и относительное удлинение в мягком состоянии
- Подготовленная для плакировки
- Характеристики надежности сплава в95
- Механические свойства алюминиевых деформируемых сплавов, упрочняемых термообработкой
- 4.1.3. Литейные алюминиевые сплавы Сплавы на основе системы Al – Si
- Сплавы на основе системы Al – Cu
- Сплавы на основе системы Al – Mg
- 4.2. Медь и медные сплавы
- И зависимость механических свойств от содержания цинка (б)
- (Кроме бериллиевых бронз)
- 4.2.1. Латуни
- Механические свойства *и назначение литейных латуней
- 4.2.2. Бронзы
- Механические свойства*деформируемых (гост 5017–74) и литейных (гост 613–79) оловянных бронз
- Механические свойства* деформируемых и литейных алюминиевых бронз
- Механические свойства бериллиевой бронзы БрБ2 в зависимости от состояния сплава
- 4.3. Титановые сплавы
- 4.3.1. Легирующие элементы титановых сплавов
- 4.3.2.Фазовые превращения в титановых сплавах
- Сплавов (легированных β - стабилизаторами)
- 4.3.3. Термическая обработка титановых сплавов
- 4.3.4. Классификация промышленных титановых сплавов
- 4.3.5. Деформируемые сплавы
- Химические составы и свойства после отжига титановых деформируемых сплавов
- Применение и свойства титановых деформируемых сплавов
- 4.3.6.Литейные сплавы
- 4.4. Магниевые сплавы
- 4.5. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой и цинковой основах
- Критериями оценки антифрикционных материалов являются:
- Требуемые свойства сплавов для подшипников скольжения
- Темное поле – твердый раствор сурьмы в олове; светлые крупные частицы – химическое соединение SnSb, мелкие частицы – Cu3Sn (справа – схематическое изображение микроструктуры)
- Вопросы для самопроверки
- Часть 3. Неметаллические материалы
- Глава 5. Общая характеристика неметаллических материалов
- 5.1. Классификация, строение и способы получения полимеров
- 5.2. Фазовые состояния и надмолекулярная структура полимеров
- Надмолекулярная структура аморфных полимеров
- 5.3. Физические состояния полимеров
- Термомеханические кривые кристаллических полимеров
- Термомеханические кривые сетчатых полимеров
- 5.4. Способы управления структурой и свойствами полимерных материалов
- Вопросы для самопроверки
- Глава 6. Основные свойства неметаллических материалов
- 6.1. Механические свойства
- 6.2. Теплофизические свойства
- 6.3. Диэлектрические свойства
- Классификация диэлектриков по диэлектрической проницаемости
- Классификация диэлектриков по диэлектрическим потерям
- Вопросы для самопроверки
- Глава 7. Пластические массы
- 7.1. Основные виды модифицирующих добавок
- 7.2. Термопластичные полимеры и материалы на их основе
- Полиэтилен
- Полипропилен
- Полиизобутилен
- Полистирол
- Политетрафторэтилен (ф-4)
- Политрифторхлорэтилен (ф-3)
- Поливинилхлорид
- Полиакрилаты
- Полиамиды
- Полиуретаны
- Поликарбонаты
- Полиимиды
- Полиэтилентерефталат
- Полиформальдегид
- Пентапласт
- Марочный ассортимент и области применения термопластов
- 7.3. Термореактивные полимеры и материалы на их основе
- Фенолоформальдегидные смолы
- Эпоксидные смолы
- Полиэфирные смолы
- Кремнийорганические смолы
- Марочный ассортимент и области применения основных термореактивных пресс-материалов и литьевых пм
- 7.4. Термоэластопласты
- 7.5. Методы получения изделий из пластических масс
- 7.5.1. Прессование
- 7.5.2. Литье под давлением
- 7.5.3. Экструзия
- 7.5.4. Термоформование
- 7.5.5. Механическая обработка пластмасс
- 7.6. Газонаполненные пластики
- Вопросы для самопроверки
- Глава 8. Волокнистые полимерные композиционные материалы
- Типичные классификационные модели ап
- 8.1. Стеклопластики
- 8.2. Углепластики
- 8.3. Органопластики
- Свойства элементарных волокон
- 8.4. Базальтопластики
- 8.5. Термопластичные композиционные материалы
- 8.6. Методы формования изделий из армированных пластиков
- 8.6.1. Контактное формование и напыление
- 8.6.2. Формование под давлением
- 8.6.3. Формование прессованием и пропиткой в замкнутой форме
- 8.6.4.Формование намоткой
- 8.6.5. Пултрузия
- Вопросы для самопроверки
- Глава 9. Природные полимеры и их производные Эфиры целлюлозы
- Вопросы для самопроверки
- Глава 10. Резиновые материалы
- 10.1. Классификация каучуков
- 10.2. Компоненты резиновых смесей
- 10.3. Способы получения резинотехнических изделий
- 10.4. Прорезиненные ткани
- 10. 5. Применение резинотехнических изделий
- Вопросы для самопроверки
- Глава 11. Клеевые материалы
- 11.1.Клеи на основе термопластичных полимеров
- 11.2. Клеи на основе эластомеров
- 11.3. Клеевые (липкие) ленты
- 11.4. Клеи на основе термореактивных смол
- Вопросы для самопроверки
- Глава 12. Герметики
- Вопросы для самопроверки
- Глава 13. Лакокрасочные материалы
- 13.1. Требования к лакокрасочным материалам
- 13.2. Классификация и виды лакокрасочных материалов
- 13.3. Полимерные порошковые композиции и покрытия на их основе
- Способы нанесения порошковых покрытий
- Вопросы для самопроверки
- Глава 14. Обивочные, прокладочные, уплотнительные и электроизоляционные материалы
- Вопросы для самопроверки
- Глава 15. Неорганические материалы
- 15.1. Технические керамики
- Гексагональными слоями ( а и в) атомов кислорода
- 15.2. Неорганические стекла
- Стекла с особыми свойствами
- Стекла в автомобилестроении
- 15.3. Стеклокристаллические материалы
- 15.4. Слюда и слюдяные материалы
- 15.5. Асбест и материалы на его основе
- Вопросы для самопроверки
- Глава 16. Жидкокристаллические материалы
- 16.1. Классификация, структура и свойства жидких кристаллов
- 16.2. Жидкокристаллические композиты
- Вопросы для самопроверки
- Список литературы Основные литературные источники
- Дополнительные литературные источники