6.2. Теплофизические свойства
Температура в значительной мере влияет на самые разнообразные свойства материалов и изделий на их основе: электрические характеристики, деформационно-прочностные свойства и др. В частности, свойства конструкционных и электроизоляционных материалов при изменении температуры в широких пределах претерпевают существенные изменения, определяющие возможность использования этих материалов. Например, в электрических машинах и аппаратах увеличение допустимого превышения температуры, которое в подавляющем большинстве случаев лимитируется именно материалами электрической изоляции, дает возможность получить более высокую мощность в неизменных габаритах или при сохранении мощности достигнуть уменьшения габаритных размеров, массы и стоимости изделий. Повышение рабочей температуры особо важно для тяговых и крановых электродвигателей, самолетного электро- и радиооборудования и других передвижных устройств, где вопросы уменьшения массы и габаритных размеров играют решающую роль.
Основными теплофизическими свойствами различных групп материалов являются: теплоемкость, теплопроводность, температурный коэффициент линейного расширения, термостойкость.
Теплоемкость синтетических полимеров меняется в широких пределах в зависимости от химической структуры полимера и температуры. Ниже температуры стеклования значения теплоемкости для одного и того же полимера, находящегося в аморфном и кристаллическом состоянии, близки. Для аморфных полимеров переход из стеклообразного состояния в высокоэластическое состояние сопровождается скачкообразным возрастанием теплоемкости. Скачок теплоемкости наблюдается и при стекловании кристаллических полимеров, причем его значение зависит от степени кристалличности полимера.
Теплопроводность полимеров зависит от температуры, химической структуры и физического состояния.
Для температурной зависимости теплопроводности аморфных полимеров характерно наличие пологого максимума при температуре стеклования. Теплопроводность кристаллических полимеров больше, чем аморфных. С повышением температуры от 180 до 150С теплопроводность одних кристаллических полимеров падает (полиэтилен, полиамид), других – растет (полипропилен, политетрафторэтилен), причем по абсолютному значению теплопроводность полимеров первой группы выше, чем второй. Для всех полимеров с ростом степени кристалличности теплопроводность увеличивается, при плавлении – сильно уменьшается.
Температурный коэффициент линейного расширения TKL полимеров зависит от химической структуры, физического состояния и температуры.
Теплоемкость кристаллического материала весьма сильно меняется при низких температурах и незначительно при высоких, особенно выше 1000С.
Теплопроводность керамических материалов зависит от состава кристаллической и стекловидной фаз, а также от пористости.
Теплопроводность спеченной керамики кристаллического строения, особенно оксидной, с повышением температуры, как правило, сильно падает. Исключение составляет диоксид циркония, теплопроводность которого с повышением температуры возрастает.
Теплопроводность керамики, содержащей значительное количество стекла одной фазы, например муллитокремнеземистой, с повышением температуры увеличивается.
Термическое расширение для подавляющего большинства керамических материалов возрастает с повышением температуры. Значения коэффициента линейного расширения различных видов технической керамики колеблется от 0 до (13 – 14).10–6.K–1.
Теплоемкость стекол растет по мере увеличения концентрации легких элементов. Наиболее низкой теплоемкостью обладают системы с высоким содержанием тяжелых элементов типа бария или свинца.
Для силикатных стекол коэффициент теплопроводности изменяется в зависимости от состава в широких пределах. Наиболее высокое значение коэффициента теплопроводности характерно для кварцевого стекла. При повышении в составе стекла содержания модификаторов теплопроводность уменьшается.
Термическое расширение стекол, вследствие их изотропности, является одинаковым. В серии силикатных стекол минимальным расширением обладает кварцевое стекло (TKL = 5.10–7.K–1). Для бинарных щелочно-силикатных стекол при повышении концентрации щелочного компонента от 0 до 33 % величина TKL возрастает, а при введении многозарядных ионов типа Fe, Ge, B, Al, Zr наблюдается снижение коэффициента термического расширения.
Для ситаллов, кроме химического состава, на величину TKL особое влияние оказывают вид и содержание кристаллической фазы. Поэтому, меняя режим термообработки, можно получать ситаллы с заданным значением TKL.
Термостойкость неорганических материалов характеризует их способность выдерживать без разрушения резкие смены температуры. Мерой термостойкости является максимальная разность температур, которую выдерживает изделие, не разрушаясь:
Т = Тmax Тk ,
где Т – термостойкость, К; Тmax – максимальная температура изделия; Т k – температура после мгновенного охлаждения.
Главными факторами, определяющими термостойкость стекол и ситаллов, являются температурный коэффициент линейного расширения TKL, прочность при растяжении в, модуль упругости Е, причем действие TKL проявляется наиболее сильно.
При внезапном охлаждении уменьшение размеров внешних слоев образца вызывает возникновение внутренних напряжений растяжения на поверхности и сжатия внутри (внутренние слои из-за низкой теплопроводности не успевают охладиться (сжаться) и растягивают внешние слои). Как известно, стекло и ситаллы значительно хуже работают на растяжение, чем на сжатие (в составляет 5 – 7 от сж), поэтому при высоком значении TKL возникает опасность разрушения даже при значительной прочности материала.
При резком нагреве поверхности внешние слои будут испытывать сжимающее напряжение, поэтому опасность разрушения будет значительно меньше, а термостойкость в 4 – 5 раз выше. На термостойкость стекол и ситаллов также оказывают влияние форма, толщина изделий, теплопроводность, условия нагрева и охлаждения.
Прочность ситаллов, как правило, значительно выше прочности стекла, поэтому и термостойкость их при равных значениях TKL имеет более высокое значение.
Чем более массивно (утолщено) изделие, тем ниже его термическая стойкость в связи с влиянием масштабного фактора и естественным увеличением градиента температур по толщине. Так как основными показателями, определяющими термостойкость, являются TKL и прочность, то все факторы, влияющие на эти показатели, а именно химический состав, термообработка (закалка), ситаллизация, будут влиять на термостойкость.
Дефекты поверхности (трещины, царапины), снижающие прочность стекла и ситаллов, понижают и термостойкость.
Термостойкость стекол находится в сложной зависимости от свойств материала, поэтому очень трудно проследить влияние одного или нескольких компонентов стекла на изменение этой характеристики. В ряду силикатных стекол наиболее высокой термостойкостью обладает кварцевое стекло (порядка 1000С).
В зависимости от значения коэффициента термостойкости стекла делятся на три группы: 1) нетермостойкие (до 100С); 2) термостойкие (до 160С); 3) высокотермостойкие (до 220С).
Кварцевое стекло, малощелочные высокоглиноземистые боросиликатные стекла являются не только термостойкими, но и жаропрочными, т.е. выдерживают неоднократное воздействие высоких температур при одновременном действии нагрузки без значительной остаточной деформации.
- Министерство образования и науки Российской Федерации
- Предисловие
- Введение
- Часть 1. Современные представления о строении различных групп материалов
- Глава 1. Основные различия в свойствах групп материалов
- Типы химической и физической связей в материалах
- В материалах:
- 1.2. Материалы с различным типом химической связи
- 1.2.1. Металлы и сплавы (металлический тип связи)
- 1.2.2. Полимеры (ковалентный и молекулярно - ковалентный типы связи)
- 1.2.3. Керамика (ковалентный и ионный типы связи)
- 1.2.4. Карбиды и интерметаллиды (ковалентно - металлический тип связи)
- 1.2.5. Композиционные материалы (смешанный тип связей)
- Pис. 1.2. Схематическое представление вклада разных типов связи в материалах
- Вопросы для самопроверки
- Часть 2. Металлические материалы
- Глава 2. Строение и свойства металлов и сплавов
- 2.1. Кристаллическое строение металлов и сплавов
- Кристаллические структуры переходных металлов 4-го периода*
- Внедрения; б – твердый раствора замещения со статистическим распределением атомов; в – упорядоченный твердый раствор замещения
- Из сплавов (деформируемых)
- 2.2. Несовершенства кристаллической структуры
- Линейные и точечные несовершенства кристаллической структуры
- 2.3. Основные свойства и характеристики металлов и сплавов
- Характеристики механических свойств
- Характеристики физических свойств
- Характеристики химических свойств
- Характеристики технологических свойств.
- 2.4. Пластическая деформация
- Пластической деформации [с.В. Грачев, в.Р. Бараз и др.]
- В зависимости от степени холодной деформации: ρ – удельное электросопротивление; Ηс – коэрцитивная сила; μ – магнитная проницаемость;
- Температуры отжига холоднодеформированного металла
- Температура начала рекристаллизации, интервал температур рекристаллизационного отжига и горячей обработки давлением
- 2.5. Термическая обработка
- Технологические параметры термообработки
- Время нагрева τн, температура выдержки tв, время выдержки τ в, скорость охлаждения V охл
- Скорости охлаждения при различных видах термической обработки
- Скорость охлаждения при каждом виде термообработки предопределяет равновесность или неравновесность получаемых продуктов фазовых превращений.
- И отпуске (б). Исходное состояние: пересыщенный при закалке твердый раствор (а); мартенсит углеродистый (б)
- Термообработка – отжиг
- Типы отжигов для сплавов разного состава
- Отжиги первого рода
- Типы отжигов первого рода
- Отжиги второго рода
- Отжиги второго рода. Отжиги углеродистых сталей
- Общепринятые обозначения линий и критических точек на диаграмме железо-цементит
- Эвтектоид носит название перлит (п). Перлит – это структура, состоящая из двух фаз: феррита и цементита, частицы которых имеют пластинчатое строение (рис. 2.22, а).
- Фазовый состав сталей после отжига в зависимости от содержания углерода
- Технологические параметры специальных отжигов сталей
- Микроструктура пластинчатого (б) и сферического(зернистого) (в) цементита
- Для доэвтектоидной стали с 0,45 % углерода; скорости охлаждения: V 1 – с печью; v2 – на воздухе; v3 – в масле; v4 – в воде
- Продукты диффузионного распада переохлажденного аустенита
- Перлит может быть получен при охлаждении с печью, сорбит – при охлаждении на воздухе, а троостит–при больших скоростях охлаждения и даже при закалке.
- Упрочняющая термическая обработка: закалка и старение
- От температуры (а) и времени (б) старения: t1 ‹ t2 ‹ t3; о – максимум твердости;
- Закалка и отпуск сталей
- Закалка сталей на мартенсит
- Технология закалки
- Образца(Vц), перлитную структуру на поверхности(Vп) – мартенситную
- Отпуск сталей
- От температуры отпуска (и.И. Новиков) Виды отпуска и применение
- Виды отпуска и структуры сталей
- 2.6. Термомеханическая обработка сталей
- Рекристаллизации
- 2.7. Поверхностная обработка сталей и сплавов
- Химико-термическая обработка сплавов.
- Хто с диффузионным насыщением углеродом и азотом
- Нитроцементация (азотонауглероживание)
- Параметры процессов хто, характеристики слоя и свойства сталей
- Химико-термическая обработка с диффузионным насыщением металлами (диффузионная металлизация)
- Поверхностная закалка сталей
- Поверхностная лазерная обработка
- Виды поверхностной лазерной обработки
- Поверхностное пластическое деформирование
- Способы ппд
- 2.8. Обеспечение служебных характеристик и повышение технико-экономической эффективности применения металлических материалов
- 2.8.1. Статическая прочность сплавов
- Обеспечение статической прочности сплавов композиционных и гетерофазных материалов
- 2.8.2. Циклическая прочность
- Факторы, влияющие на предел выносливости
- 2.8.3. Контактная выносливость
- Способы обеспечения контактной выносливости:
- Коэффициент вязкости разрушения различных материалов
- 2.8.5. Износостойкость
- Стали и сплавы для работы в контакте с рабочей средой
- Твердость и модуль упругости карбидов
- 2.8.6. Жаропрочность
- 2.8.7. Термостойкость
- 2.8.8. Поверхностная стойкость
- Обеспечение жаростойкости
- Вопросы для самопроверки
- Глава 3. Сплавы на основе железа
- 3.1. Машиностроительные конструкционные стали
- 3.1.1. Классификация конструкционных сталей
- Классификация сталей по химическому составу
- Классификация и маркировка в зависимости от качества стали
- 3.1.2. Углеродистые стали
- 3.1.3. Легированные стали
- Влияние легирующих элементов на структуру и свойства сталей
- Влияние легирующих элементов на феррит
- Влияние легирующих элементов на аустенит и мартенсит
- Цементуемые легированные стали
- Улучшаемые легированные стали
- Механические свойства некоторых улучшаемых сталей
- Критический диаметр легированных сталей
- Характеристика высокопрочных сталей
- Комплекс механических свойств среднеуглеродистых легированных сталей, упрочняемых закалкой с последующим низким отпуском
- Н18к9м5т от температуры старения
- Механические свойства мартенситно-стареющих сталей системы Fe–Ni–Co–Mo–Ti
- 3.1.4. Стали для подшипников качения
- Требования к подшипниковым сталям и пути обеспечения необходимых свойств
- Термическая обработка подшипниковых сталей типа шх
- 3.1.5. Стали рессорно-пружинные
- Предел текучести рессорно-пружинных сталей общего назначения*
- Марки и применение рессорно-пружинных сталей
- 3. 2. Стали специального назначения
- 3.2.1. Коррозионностойкие стали
- 3.2.2. Жаростойкие стали
- 3.2.3. Жаропрочные стали
- Двс и пути их обеспечения
- Условия эксплуатации:
- 3.3. Чугуны
- Химический состав конструкционных чугунов
- Форма графита и названия чугунов
- Зависимость механических свойств чугунов от формы графита и структуры металлической части
- 3.3.1. Серые чугуны
- Применение серых чугунов
- 3.3.2. Высокопрочные чугуны
- Применение высокопрочных чугунов
- Применение чугунов с вермикулярным графитом
- 3.3.4.Ковкие чугуны
- Применение ковких чугунов
- Применение специальных чугунов
- 3.4. Порошковые конструкционные и легированные стали
- 3.4.1. Классификация порошковых сталей
- Марки и применение пористых конструкционных материалов
- 3.4.2. Применение порошковых сталей
- Вопросы для самопроверки
- Глава 4. Цветные металлы и сплавы
- 4.1. Алюминиевые сплавы
- Удельная прочность конструкционных сплавов
- 4.1.1. Классификация и маркировка алюминиевых сплавов
- Соответственно
- Условные обозначения видов термической обработки деформируемых сплавов
- 4.1.2. Деформируемые сплавы
- Разрыву и относительное удлинение в мягком состоянии
- Подготовленная для плакировки
- Характеристики надежности сплава в95
- Механические свойства алюминиевых деформируемых сплавов, упрочняемых термообработкой
- 4.1.3. Литейные алюминиевые сплавы Сплавы на основе системы Al – Si
- Сплавы на основе системы Al – Cu
- Сплавы на основе системы Al – Mg
- 4.2. Медь и медные сплавы
- И зависимость механических свойств от содержания цинка (б)
- (Кроме бериллиевых бронз)
- 4.2.1. Латуни
- Механические свойства *и назначение литейных латуней
- 4.2.2. Бронзы
- Механические свойства*деформируемых (гост 5017–74) и литейных (гост 613–79) оловянных бронз
- Механические свойства* деформируемых и литейных алюминиевых бронз
- Механические свойства бериллиевой бронзы БрБ2 в зависимости от состояния сплава
- 4.3. Титановые сплавы
- 4.3.1. Легирующие элементы титановых сплавов
- 4.3.2.Фазовые превращения в титановых сплавах
- Сплавов (легированных β - стабилизаторами)
- 4.3.3. Термическая обработка титановых сплавов
- 4.3.4. Классификация промышленных титановых сплавов
- 4.3.5. Деформируемые сплавы
- Химические составы и свойства после отжига титановых деформируемых сплавов
- Применение и свойства титановых деформируемых сплавов
- 4.3.6.Литейные сплавы
- 4.4. Магниевые сплавы
- 4.5. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой и цинковой основах
- Критериями оценки антифрикционных материалов являются:
- Требуемые свойства сплавов для подшипников скольжения
- Темное поле – твердый раствор сурьмы в олове; светлые крупные частицы – химическое соединение SnSb, мелкие частицы – Cu3Sn (справа – схематическое изображение микроструктуры)
- Вопросы для самопроверки
- Часть 3. Неметаллические материалы
- Глава 5. Общая характеристика неметаллических материалов
- 5.1. Классификация, строение и способы получения полимеров
- 5.2. Фазовые состояния и надмолекулярная структура полимеров
- Надмолекулярная структура аморфных полимеров
- 5.3. Физические состояния полимеров
- Термомеханические кривые кристаллических полимеров
- Термомеханические кривые сетчатых полимеров
- 5.4. Способы управления структурой и свойствами полимерных материалов
- Вопросы для самопроверки
- Глава 6. Основные свойства неметаллических материалов
- 6.1. Механические свойства
- 6.2. Теплофизические свойства
- 6.3. Диэлектрические свойства
- Классификация диэлектриков по диэлектрической проницаемости
- Классификация диэлектриков по диэлектрическим потерям
- Вопросы для самопроверки
- Глава 7. Пластические массы
- 7.1. Основные виды модифицирующих добавок
- 7.2. Термопластичные полимеры и материалы на их основе
- Полиэтилен
- Полипропилен
- Полиизобутилен
- Полистирол
- Политетрафторэтилен (ф-4)
- Политрифторхлорэтилен (ф-3)
- Поливинилхлорид
- Полиакрилаты
- Полиамиды
- Полиуретаны
- Поликарбонаты
- Полиимиды
- Полиэтилентерефталат
- Полиформальдегид
- Пентапласт
- Марочный ассортимент и области применения термопластов
- 7.3. Термореактивные полимеры и материалы на их основе
- Фенолоформальдегидные смолы
- Эпоксидные смолы
- Полиэфирные смолы
- Кремнийорганические смолы
- Марочный ассортимент и области применения основных термореактивных пресс-материалов и литьевых пм
- 7.4. Термоэластопласты
- 7.5. Методы получения изделий из пластических масс
- 7.5.1. Прессование
- 7.5.2. Литье под давлением
- 7.5.3. Экструзия
- 7.5.4. Термоформование
- 7.5.5. Механическая обработка пластмасс
- 7.6. Газонаполненные пластики
- Вопросы для самопроверки
- Глава 8. Волокнистые полимерные композиционные материалы
- Типичные классификационные модели ап
- 8.1. Стеклопластики
- 8.2. Углепластики
- 8.3. Органопластики
- Свойства элементарных волокон
- 8.4. Базальтопластики
- 8.5. Термопластичные композиционные материалы
- 8.6. Методы формования изделий из армированных пластиков
- 8.6.1. Контактное формование и напыление
- 8.6.2. Формование под давлением
- 8.6.3. Формование прессованием и пропиткой в замкнутой форме
- 8.6.4.Формование намоткой
- 8.6.5. Пултрузия
- Вопросы для самопроверки
- Глава 9. Природные полимеры и их производные Эфиры целлюлозы
- Вопросы для самопроверки
- Глава 10. Резиновые материалы
- 10.1. Классификация каучуков
- 10.2. Компоненты резиновых смесей
- 10.3. Способы получения резинотехнических изделий
- 10.4. Прорезиненные ткани
- 10. 5. Применение резинотехнических изделий
- Вопросы для самопроверки
- Глава 11. Клеевые материалы
- 11.1.Клеи на основе термопластичных полимеров
- 11.2. Клеи на основе эластомеров
- 11.3. Клеевые (липкие) ленты
- 11.4. Клеи на основе термореактивных смол
- Вопросы для самопроверки
- Глава 12. Герметики
- Вопросы для самопроверки
- Глава 13. Лакокрасочные материалы
- 13.1. Требования к лакокрасочным материалам
- 13.2. Классификация и виды лакокрасочных материалов
- 13.3. Полимерные порошковые композиции и покрытия на их основе
- Способы нанесения порошковых покрытий
- Вопросы для самопроверки
- Глава 14. Обивочные, прокладочные, уплотнительные и электроизоляционные материалы
- Вопросы для самопроверки
- Глава 15. Неорганические материалы
- 15.1. Технические керамики
- Гексагональными слоями ( а и в) атомов кислорода
- 15.2. Неорганические стекла
- Стекла с особыми свойствами
- Стекла в автомобилестроении
- 15.3. Стеклокристаллические материалы
- 15.4. Слюда и слюдяные материалы
- 15.5. Асбест и материалы на его основе
- Вопросы для самопроверки
- Глава 16. Жидкокристаллические материалы
- 16.1. Классификация, структура и свойства жидких кристаллов
- 16.2. Жидкокристаллические композиты
- Вопросы для самопроверки
- Список литературы Основные литературные источники
- Дополнительные литературные источники