3.3.5. Фотоэлектрические датчики
Принцип действия преобразователей фотоэлектрических датчиков (фотоэлементов) основан на использовании фотоэлектрического эффекта, т. е. они реагируют на изменение светового потока. Создание фотоэлектрических преобразователей оказалось возможным, когда были открыты материалы, электроны которых получают дополнительную энергию при воздействии световой энергии. Причем значение дополнительной энергии может быть таково, что часть электронов оказывается свободной.
Взависимости от поведения электронов, высвобождающихся под действием светового потока, различают три группы фотоэлементов: с внешним и внутренним фотоэффектом и с запирающим слоем (вентильные).
Фотоэлемент с внешним фотоэффектом (рис. 3.11, а) представляет собой вакуумную двухэлектродную лампу. Катод 1 образован светочувствительным слоем (цезий или сплав сурьмы с цезием) и нанесен на внутреннюю поверхность лампы, а анод 2 выполняется в виде кольца или пластины. Нередко в лампу вводят некоторое количество нейтрального газа (аргона), который не окисляет поверхность металла, но способен ионизироваться под ударами летящих электронов и увеличивать за счет своих ионов значение протекающего тока. Под действием световой энергии с поверхности выбиваются электроны, образующие электрический ток (внешний фотоэффект). Промышленность выпускает фотоэлементы следуюших типов: ЦГ — цезиевый газонаполненный; СЦВ — сурьмяно-цезиевый, вакуумный; ЦВ — цезиевый, вакуумный.
Фотоэлементы с внешним фотоэффектом обладают высокой чувствительностью и высокой температурной стабильностью. Для них характерна линейная зависимость фототока от светового потока. К числу недостатков рассмотренных фотоэлементов, которые ограничивают их применение в автоматических системах управления, относятся: необходимость в повышенном напряжении питания; хрупкость стеклянного баллона; старение и утомляемость, т. е. снижение чувствительности при сильной освещенности. Фотоэлементы с внутренним фотоэффектом (фоторезисторы) чувствительнее элементов первого типа, использующих фотоэффект со свободной поверхности металла. Фотоэлементы с внутренним фотоэффектом не нуждаются во вспомогательной энергии, и им может быть придана весьма разнообразная и очень удобная форма. Недостатками их являются: подверженность влиянию окружающей температуры, утомляемость и высокая инерционность. Последнее ограничивает применение фотоэлементов с внутренним фотоэффектом при частоте прерывания светового потока в несколько десятков герц.
Фоторезисторы (рис. 3.11, б) представляют собой стеклянную пластинку 1 с нанесенным тонким слоем селена или сернистых соединений различных металлов (таллия, висмута, кадмия, свинца). К пластине прикреплены электроды 2. имеющие контакт с полупроводниковым слоем. Размеры фоторезисторов очень невелики. При подаче к электродам напряжения через фоторезистор будет протекать ток, значение которого пропорционально освещенности. Зависимость тока от освещения имеет нелинейную величину. Однако чувствительность фоторезисторов в сотни раз превышает чувствительность вакуумных элементов, что позволяет их использовать в автоматических устройствах без усилителей.
У вентильных преобразователей свободные электроны, изменяя свою энергию под действием светового потока, остаются в веществе. В промышленности получили наибольшее распространение селеновые и меднозакисные фотоэлементы.
Селеновый фотоэлемент (рис. 3.11, в) имеет четыре рабочих слоя. Первый слой образован тонкой пленкой золота 1, далее идут запирающий слой 2, селеновый слой 3 и стальная подкладка 4. Запирающий слой, обладая детекторным свойством, пропускает электроны, выделившиеся из пленки золота, и препятствуют прохождению электронов противоположного направления. Таким образом, световой поток, проходя через пленку золота, создает вентильный фотоэффект, т. е. электроны из освещенного слоя переходят в неосвещенный. Это приводит к возникновению разности потенциалов Uвых. Фотоэлектрические преобразователи просты по устройству и достаточно надежны в работе, однако они более инерционны.
Азбель В.О. и др. Гибкое автоматическое производство . – Л.: «Машиностроение», 1983. – 376 с.
Бауман В.А., Быховский И.И. Вибрационные машины и процессы в строительстве. – М.: Высшая школа, 1977. – 255 с.
Белоусов А.П. и др. Автоматизация процессов в машиностроении. – М.: «Высш. школа», 1973. – 456 с.
Блехман И.И., Джанелидзе Г.Ю. Вибрационное перемещение. – М.: Наука, 1964. – 410 с.
Бовсуновский Я.И., Свечников Л.В. Механизация и автоматизация контрольных операций в машиностроении и приборострении. – М.-К.: Машгиз, 1961. 318 с.
Бочков В.М., Сілін Р.І. Обладнання автоматизованого виробництва. – Львів: Видавництво Державного університету “Львівська політехніка”, 2000. – 380 с.
Буда Я.Я. и др. Автоматизация процессов машиностроения. – М.: «Высшая школа», 1991. – 480 с.
Владзиевский А.П. Автоматические линии в машиностроении. Кн. І. – М.: Машгиз, 1958. – 430 с.
Владзиевский А.П., Белоусов А.П. Основы автоматизации производства в машиностроении. – М.: «Высшая школа», 1974. – 352 с.
Волчкевич Л.И. и др. Автоматы и автоматические линии. Ч.1 – М.: Высшая школа, 1976. – 230 с.
- Курс лекций по дисциплине «автоматизация производственных процессов» для студентов дневной и заочной форм обучения вступление
- 1. Общие положения автоматизации
- 1.1. Основные направления и задачи автоматизации различных видов производства
- 1.2. Основные положения автоматизации производства
- 1.2.1. Основные понятия и определения
- 1.2.2. Уровень механизации и автоматизации производства
- 1.2.3. Классификация автоматического оборудования и технологических процессов
- 2. Автоматизация загрузки и разгрузки.
- 2.1. Назначение и виды загрузочных устройств
- 2.2. Автоматические устройства для непрерывного способа питания
- 2.3. Автоматические устройства для поштучного способа питания
- 2.3.1. Устройства магазинного питания
- Загрузочного устройства
- 2.3.2. Лотки По форме продольного профиля лотки бывают прямолинейные обычные, прямолинейные роликовые, изогнутые, винтовые (спиральные), зигзагообразные и специальные (змейковые, каскадные и др.).
- 2.4. Вибрационное перемещение
- 2.4.4. Вибрационные лотки-транспортеры
- Автоматические загрузочные устройства бункерного питания
- 2.6.1. Узлы механических бзу
- 2.7. Вибрационные бункерные загрузочные устройства
- 2.7.1. Бункерное загрузочное устройство с многослойными подвесками
- 2.7.2. Вбзу с подвеской чаши на цилиндрических стержнях
- 2. 8. Вибрационные питатели-подъемники
- 3. Автоматический контроль.
- 3.1. Источники и характеристики производственных погрешностей
- 3.3. Датчики
- 3.3.1 Потенциометрические датчики
- 3.3.2. Индуктивные датчики
- 3.3.3. Емкостные датчики
- 3.3.4. Тензометрические датчики
- 3.3.5. Фотоэлектрические датчики