logo
Конспект лекций ПТТ

3.1.6 Емкостные манометры

Действие приборов основано на изменении емкости плоского конденсатора при изменении расстояния между обкладками.

Емкость плоского конденсатора, состоящего из двух обкладок, выражается зависимостью

,

где – диэлектрическая проницаемость среды между обкладками; s – площадь одной из обкладок; – расстояние между обкладками.

С уменьшением емкость возрастает по гиперболическому закону. Поэтому выгодно работать при малом начальном значении , что создает большую чувствительность и возможность работы на линейном участке характеристики.

Устройство одного из емкостных манометров показано на рисунке 26. Корпус датчика снабжен ниппелем для присоединения к объекту измерения. В дно ниппеля впаяна мембрана, воспринимающая давление. В верхнюю часть корпуса ввернута втулка 3, положение которой относительно корпуса может фиксироваться контргайкой. Внутрь втулки 3 вставлен керамический цилиндр – изолятор с электродом. Электрод оканчивается диском, являющимся второй обкладкой конденсатора.

Под действием давления мембрана прогибается, изменяется расстояние между ней и диском, увеличивается емкость конденсатора. Выбирая размеры мембраны, можно создавать приборы для измерения давлений в широком диапазоне.

Рисунок 26 – Емкостной манометр: 1 – корпус датчика; 2 – мембрана; 3 – втулка; 4 – контргайка; 5 – изолятор; 6 – электрод; 7 – диск

На показание емкостных манометров влияет температура окружающей среды. При изменении температуры изменяются размеры датчика, особенно расстояние между обкладками.

Недостатком емкостных манометров является также большое влияние паразитных емкостей, главным образом соединительных проводов и металлических частей установки, которое проявляется неодинаково и зависит от взаимного расположения деталей.

Погрешность измерений не превышает ±1,5–2% предела шкалы прибора. Измерителями емкости обычно служат высокочувствительные резонансные приборы.