Манометры сопротивления
Действие приборов основано на изменении сопротивления проводника под действием внешнего давления. Электрическими проводниками принципиально могут служить любые металлы и сплавы, а также полупроводники. Однако для использования в манометрах сопротивления наиболее подходящим материалом является манганин, так как он обладает малым температурным коэффициентом сопротивления.
Недостаток манганина заключается в малом изменении сопротивления от действия давления (малый пьезокоэффициент).
Если обозначить сопротивление проводника, подвергаемого давлению, через R, изменение сопротивления – через , а давление – через р, то изменение сопротивления будет следовать линейному закону
,
где k – пьезокоэффициент, величина которого зависит от материала проводника. Из этого соотношения следует, что
.
Значения пьезокоэффициента не только различны для разных материалов, но непостоянны даже для одного и того же материала. Для манганина .
Малая величина пьезокоэффициента обусловливает целесообразность применения манганиновых манометров только для измерения высоких и сверхвысоких давлений. Одна из конструкций манганинового манометра показана на рисунке 25. Воспринимающей частью манометра является однослойная катушка 1 диаметром 8 мм из манганиновой проволоки диаметром 0,05 мм, намотанной бифилярно. Сопротивление катушки 180–200 ом. Один конец обмотки катушки припаян к гайке 2, а другой – к медному стержню 3. Стержень проходит через канал в гайке. Центральное положение стержня в канале обеспечивается эбонитовыми втулками 4 и 5. Уплотнение стержня достигается набивкой из фибровых и резиновых колец 6, сжатых гайкой 7. Гайка 2 ввертывается в корпус 8, снабженный ниппелем 9 для присоединения к аппарату или трубопроводу, в котором измеряется давление.
Для измерения сопротивления может быть использован любой измеритель электрических сопротивлений, например электронный уравновешенный мост. Пьезокоэффициент для разных образцов манганина непостоянен, поэтому манганиновые манометры сопротивления необходимо калибровать после изготовления.
Рисунок 25 – манганиновый манометр сопротивления: 1 – катушка; 2 и 7 – гайки; 3 – стержень; 4 и 5 – втулки; 6 – кольца; S – корпус; 9-ниппель
При линейной зависимости можно калибровать путем измерения сопротивления манганиновой катушки при двух различных давлениях, одним из которых может быть атмосферное давление. По литературным данным, линейная зависимость сопротивления манганина от давления проверена до 3000 МПа (30 000 кг/см2), Точность измерения давления манганиновым манометром зависит главным образом от точности измерения сопротивления катушки, качества калибровки и от точности определения калибровочных давлений. Погрешность измерения обычно не превышает ± 1% предела шкалы. Кроме металлических датчиков, в манометрах сопротивления применяются полупроводниковые датчики.
Известны конструкции манометров с угольными столбиками, составленными из тонких дисков диаметром 5–10 мм и толщиной 1,0 мм, изготовленных из электродного угля. У такого столбика при сжатии уменьшается сопротивление, что объясняется улучшением контактов между отдельными дисками. Пьезокоэффициент угольного столбика в тысячи раз больше, чем манганина; однако нелинейная зависимость сопротивления от давления, большой гистерезис, непостоянство градуировки и значительное влияние температуры ограничивают применение угольных манометров.
Использование других полупроводников пока не вышло из пределов лабораторных исследований.
Все полупроводниковые датчики пригодны для измерения давлений не выше 5,88–7,84 МПа.
- Конспект лекцій
- «Автоматизація виробничіх процесів та мікропроцесорна техніка»
- Лекция 1 – Основные понятия, определения автоматизации. Процессы управления, структурная схема асу тп. Виды управления. Автоматизированные системы, виды схем автоматизации.
- Лекция 2 – Классификация систем автоматизации, автоматические системы.
- Лекция 3 – Технические средства автоматизации, э/м реле, геркон, магнитные и электронные усилители, транзисторы, исполнительные механизмы.
- Структура усилителя
- Каскады усиления
- Аналоговые усилители и цифровые усилители
- Виды усилителей по элементной базе
- Виды усилителей по диапазону частот
- Виды усилителей по полосе частот
- Виды усилителей по типу нагрузки
- Специальные виды усилителей
- Некоторые функциональные виды усилителей
- Усилители в качестве самостоятельных устройств
- Питание
- Простейшее включение оу
- Параметры по постоянному току
- Параметры по переменному току
- Нелинейные эффекты
- Ограничения тока и напряжения
- По типу элементной базы
- По области применения
- Другие классификации
- По основному полупроводниковому материалу
- По структуре
- Комбинированные транзисторы
- Лекция 4 – Микропроцессорная техника, контроллеры, программирование. Основные характеристики мп - контроллеров
- Лекция 5 - Цифровая обработка сигналов (квантование, цифровая фильтрация).
- Лекция 6 - Регуляторы. Методы получения информации, датчики, измерительные устройства. Автоматические регуляторы
- Измерения температуры.
- Анализ современных методов автоматического контроля давления и выбор наиболее рационального метода
- Если абсолютное давление ниже барометрического, то
- 3.1 Классификация приборов для измерения давления
- Манометры сопротивления
- 3.1.6 Емкостные манометры
- Расходомеры
- Уравнемеры
- Измерение уровня с помощью радиоактивных изотопов Область применения
- Лекция 7 Компьютерные сети.
- Лекция 8 - Магистральная структура компьютерных сетей. Уровни программного обеспечения сети.
- Лекция 9 - Интерфейсы (rs 232)
- Лекция 10 - scada системы
- Системы scada
- Лекция 11 - Нечеткие алгоритмы управления
- Лекция 12 - Искусственная нейронная сеть.
- Этапы решения задач:
- Классификация по характеру связей Сети прямого распространения (Feedforward)
- Рекуррентные нейронные сети
- Радиально-базисные функции
- Самоорганизующиеся карты
- Известные типы сетей
- Отличия от машин с архитектурой фон Неймана
- Примеры приложений Предсказание финансовых временных рядов
- Лекция 13 - Система автоматического контроля и регулирования 3-х зонной методической печи.
- 13.1. Технологические параметры, определяющие работу доменной печи
- 13.2 Локальные системы автоматического управления доменным процессом
- Регулирование температуры горячего дутья.
- Регулирование соотношения "природный газ — холодное дутье" с коррекцией по кислороду
- 13.4 Задачи управления ходом доменной печи
- 13.5 Система комплексной автоматизации доменного производства
- Лекция 14 - Система автоматического контроля и регулирования 3-х зонной методической печи
- Лекция 15 - Система автоматического регулирования разливкой стали на мнлз.
- 2 Задачи управления на мнлз
- 3 Локальные системы управления
- 4 Асу тп разливки стали на мнлз
- Лекция 16 - Система автоматического регулирования тепловым режимом дуговой сталеплавильной печи и установки внепечной обработки стали «Печь-ковш».