Выбор рациональной системы электропривода.
Электроприводы турбомеханизмов потребляют не менее 20-25% всей вырабатываемой электроэнергии и в большинстве случаев остаются нерегулируемыми, что не позволяет получить режим рационального энергопотребления и расхода воды при изменении технологических потребностей в широких пределах. Силовое оборудование выбирается на максимальную производительность, в действительности же его среднесуточная загруженность может составлять около 50% от номинальной мощности. Значительное снижение момента нагрузки при снижении скорости вращения приводного двигателя, характерное для рассматриваемых механизмов, обеспечивает существенную экономию электроэнергии (до 50%) при использовании регулируемого электропривода и позволяет создать принципиально новую технологию транспортировки воды, воздуха и т. д., обеспечивающую эффективное регулирование производительности агрегата. Кроме того, поддержание в системе минимально необходимого давления приводит к существенному уменьшению непроизводительных расходов транспортируемого продукта и снижению аварийности гидравлических сетей.
Невысокие требования к качеству регулирования давления и расхода обуславливают возможность применения наиболее простых и, следовательно, относительно недорогих преобразователей частоты, которые являются наиболее удобными с точки зрения проектирования и наладки. Положительным моментом является также то, что преобразователь частоты может быть легко внедрен в уже существующую установку без какой-либо реконструкции системы в целом. Сочетание высокой экономичности регулирования и относительно низкой стоимости оборудования обеспечивает минимальный срок его окупаемости (6-12 месяцев).
В целом применение частотно-регулируемого асинхронного электропривода в насосных установках дает следующие преимущества:
экономия электроэнергии (до 50%);
экономия транспортируемого продукта за счет снижения непроизводительных расходов (до 25%);
снижение аварийности гидравлической или пневматической сети за счет поддержания минимально необходимого давления;
снижение аварийности сети и самого агрегата за счет возможности применения плавного пуска;
повышение надежности и снижение аварийности электрооборудования за счет устранения ударных пусковых токов;
снижение уровня шума, создаваемого установкой;
удобство автоматизации;
удобство и простота внедрения.
Учитывая плюсы частотного регулирования в качестве приводного двигателя насосной установки будем использовать асинхронный двигатель с короткозамкнутым ротором, а питание двигателя осуществлять от преобразователя частоты.
-
Содержание
- Введение
- Анализ технологического процесса промышленной установки и формулирование требований к автоматизированному электроприводу
- Описание промышленной установки.
- Анализ технологического процесса промышленной установки и выбор управляемых координат электропривода.
- Формулирование требований к автоматизированному электроприводу.
- Проектирование функциональной схемы автоматизированного электропривода
- Обзор систем электропривода, применяемых в промышленной установке.
- Выбор рациональной системы электропривода.
- Проектирование функциональной схемы автоматизированного электропривода.
- Выбор электродвигателя
- Анализ кинематической схемы механизма и определение ее параметров. Составление математической модели механической части электропривода и определение ее параметров.
- Предварительный выбор двигателя по мощности.
- Проверка выбранного электродвигателя по нагреву и перегрузочной способности.
- Проектирование преобразователя электрической энергии
- Определение возможных вариантов и обоснование выбора вида преобразователя электрической энергии.
- Расчет параметров и выбор электрических аппаратов силовой цепи: входного и выходного фильтров, тормозного резистора.
- Проектирование системы автоматического управления
- Выбор датчиков для измерения управляемых координат электропривода
- Составление математических моделей (уравнений, структурных схем) объекта управления, датчиков и исполнительного устройства
- Расчет параметров объекта управления, датчиков и исполнительного устройства.
- Проектирование регуляторов на основании разработанных математических моделей и требований к автоматизированному электроприводу
- Расчет и анализ динамических и статических характеристик автоматизированного электропривода
- Разработка компьютерной (имитационной) модели автоматизированного электропривода.
- Расчет переходных процессов и определение показателей качества.
- Окончательная проверка правильности выбора двигателя
- Построение точной нагрузочной диаграммы электропривода за цикл работы автоматизированного электропривода.
- Проверка электродвигателя по нагреву и перегрузочной способности электропривода по точной нагрузочной диаграмме.
- Проектирование системы автоматизации промышленной установки на основе программируемого контроллера
- Формализация условий работы промышленной установки.
- Разработка алгоритма и программы управления.
- Проектирование функциональной схемы системы автоматизации.
- Выбор аппаратов системы автоматизации.
- 8.4 Выбор аппаратов системы автоматизации
- Проектирование схемы электрической соединений системы автоматизации.
- Полное описание функционирования системы автоматизации.
- Проектирование схемы электроснабжения и электрической защиты промышленной установки
- Выбор аппаратов, проводов и кабелей.
- Проектирование схемы электрической принципиальной автоматизированного электропривода
- Составление перечня элементов электрооборудования промышленной установки.
- Полное описание функционирования схемы электрической принципиальной автоматизированного электропривода.
- Охрана труда
- Меры безопасности при обслуживании электродвигателей насосной станции
- Пожарная безопасность
- Экономическое обоснование технических решений.