Тема 5.1. Автоматические линии последовательного действия
Автоматы и линии последовательного действия дифференцируют обработку, разбивая на группы операций, стремясь к одинаковой их продолжительности и располагая в различных позициях согласно принятой технологической последовательности. Обработку ведут во всех позициях одновременно; изделие последовательно проходит через все позиции и обрабатывается в них различными группами инструментов согласно технологическому процессу так, что в обработке одновременно находится число изделий, равное числу позиций.
Полную обработку изделия длительностью tpо можно выполнить в однопозиционном автомате (рис. 5.1, а). Требования к повышению производительности привели к созданию автоматов последовательного действия с дифференциацией и концентрацией технологического процесса (рис. 5.1, б). При небольшом числе позиций (4-8) более рациональной является компоновка автоматов с расположением позиций по окружности (рис. 5.1, в). Дальнейший рост требований к повышению производительности влечет за собой увеличение степени дифференциации и концентрации операций и числа рабочих позиций (рис. 5.1, г). Однако при большом числе позиций нерациональной оказывается уже круговая компоновка из-за наличия большого “мертвого” пространства внутри автомата. Отсюда возврат к линейной компоновке (рис. 5.1, д).
Постепенное возрастание количества последовательных позиций (рис. 5.1, в, г, д) приводит к снижению надежности в работе, так как любой отказ инструмента или механизма вызывает останов всей системы из-за наличия жесткой связи между позициями. Поэтому для уменьшения общих потерь систему делят на отдельные участки, между которыми располагают магазины-накопители (рис. 5.1, е), компенсирующие простои соседних участков. В случае отказа первого участка, второй участок получает заготовки из накопителя на границе между первым и вторым участком.
Рис. 5.1. Развитие структурных схем компоновки автоматических линий последовательного действия
При малом числе позиций в участке становится целесообразным возврат к круговой компоновке позиций (рис. 5.1, ж).
Приведенный анализ показывает, что принципиального отличия между автоматами и автоматическими линиями не существует. Системы (рис. 5.1, б, в, г, д) с равным основанием могут быть отнесены и к многопозиционным автоматам, и к автоматическим линиям. И те, и другие имеют единые законы построения, единые закономерности производительности.
Производительность однопозиционной машины, полностью выполняющей заданный технологический процесс,
,
где tpо – суммарное время технологического воздействия согласно принятому технологическому процессу; tx – суммарное время несовмещенных холостых ходов (загрузка и съем изделий, зажим и разжим, подвод и отвод инструментов и т. д.); ΣС – потери по инструменту одного комплекта инструмента; tе – потери по оборудованию одного комплекта механизмов и устройств.
При этом ΣС + te = Σtп – собственные внецикловые потери однопозиционного автомата.
Так как отказ любой позиции приводит к останову всей машины, ее собственные внецикловые потери
.
Графики зависимости всех составляющих затрат времени от числа рабочих позиций q показаны на рис. 5.2.
Рис. 5.2. Зависимость рабочих, холостых ходов и внецикловых потерь автоматов последовательного действия от числа рабочих позиций
Подставляя значения длительности рабочего цикла и собственных внецикловых потерь в общую формулу производительности, получаем функциональную зависимость производительности машин последовательного действия от числа рабочих позиций:
.
На рис. 5.3 показаны графики зависимости производительности автоматов последовательного действия от числа позиций. При увеличении числа позиций производительность сначала растет, а затем падает вследствие возрастания внецикловых потерь. Следовательно, значительное увеличение числа позиций может привести к обратному результату.
Рис. 5.3. Графики зависимости производительности автоматов последовательного действия от числа позиций
Очевидно, для каждого сочетания конкретных условий работы можно определить наивыгоднейшую степень дифференциации технологического процесса, т. е. число позиций автомата qmах, при котором обеспечивается максимальная производительность Qmax.
Графики позволяют наглядно объяснить тенденции в проектировании многопозиционных машин, сложившиеся в различных отраслях машиностроения. В металлообработке, особенно при обработке металлов резанием, интенсивность отказов очень велика, поэтому число позиций в многошпиндельных токарных автоматах целесообразно выбирать небольшим. При этом пределы их колебаний, вызванные различной величиной потерь, также невелики. Это хорошо подтверждается, например, многолетним опытом конструирования многошпиндельных токарных автоматов, которые создаются с числом позиций q = 4, 6, 8.
Указанные закономерности изменения производительности и выбора числа рабочих позиций в равной степени справедливы и для автоматических линий последовательного действия с жесткой межагрегатной связью (см. рис. 5.1, б, в, г, д). В автоматических линиях, разделенных на участки, зависимость длительности рабочего цикла от числа позиций сохраняется полностью, как и для многопозиционных автоматов. Внецикловые потери одного участка, при делении линии по методу равных потерь и полной компенсации накопителями простоев остальных участков, составляют
,
где nуч – число участков, на которое разделена линия.
Если компенсация простоев происходит неполностью, что всегда имеет место из-за ограниченной емкости накопителей, простои i-го участка возрастут в w раз:
,
где w – коэффициент возрастания внецикловых потерь из-за простоев соседних участков.
Подставляя значение tуч в общую формулу производительности, получаем
.
Показанные на рис. 5.4 графики зависимости производительности автоматических линий от числа рабочих позиций при различном числе участков показывают, что деление линии на участки позволяет повысить наивыгоднейшую степень дифференциации и концентрации операций технологического процесса.
Рис. 5.4. Производительность автоматических линий последовательного действия при различном числе позиций и участков
- Автоматизация технологических процессов и производств
- 220200.62.1 – Автоматизация технологических процессов и производств (в машиностроении)
- 1. Информация о дисциплине
- 1.1. Предисловие
- 1.2. Содержание дисциплины и виды учебной работы
- 1.2.1. Содержание дисциплины по гос
- 1.2.2. Объем дисциплины и виды учебной работы
- 1.2.3. Перечень видов практических занятий и контроля
- 2. Рабочие учебные материалы
- 2.1. Рабочая программа (объем 140 часов) Введение (4 часа)
- Раздел 1. Автоматизация технологических процессов на базе локальных средств (28 часов)
- 1.1. Автоматизированный технологический процесс в машиностроении
- 1.2. Оборудование автоматизированных производств
- 1.3. Автоматизация процессов сборки
- Раздел 2. Комплексная автоматизация производственных систем обработки (28 часов)
- 2.1. Гибкие производственные системы
- 2.2. Автоматизированные транспортно-складские системы
- 2.3. Система автоматического контроля гпс
- Раздел 3. Моделирование работы технологических систем
- 3.2. Моделирование работы гпс
- Раздел 4. Автоматизация подготовки информационного и программного обеспечения (16 часов)
- 4.1. Информационная подготовка автоматизированных производств
- 4.2. Автоматизированная разработка программного обеспечения процессов обработки изделий
- Раздел 5. Автоматические линии (20 часов)
- 5.1. Автоматические линии последовательного действия
- 5.2. Автоматические линии параллельного действия
- 5.3. Автоматические линии последовательно-параллельного действия
- Раздел 6. Интегрированные системы автоматизации и управления технологическими процессами, производствами и предприятиями (20 часов)
- 6.1. Основы построения интегрированных систем управления
- 6.2. Автоматизированные системы управления технологическими процессами
- 6.3. Системы автоматизации управления предприятиями
- Заключение (4 часа)
- 2.2. Тематический план дисциплины
- 2.2.1. Тематический план дисциплины для студентов очной формы обучения
- 2.2.2. Тематический план дисциплины для студентов очно-заочной формы обучения
- 2.2.3. Тематический план дисциплины для студентов заочной формы обучения
- 2.3. Структурно-логическая схема дисциплины
- 2.4. Временной график изучения дисциплины при использовании информационно-коммуникационных технологий
- 2 25 .5. Практический блок
- 2.5.1. Практические занятия
- 2.5.1.1. Практические занятия (очная форма обучения)
- 2.5.1.2. Практические занятия (очно-заочная форма обучения)
- 2.5.1.3. Практические занятия (заочная форма обучения)
- 2.5.2. Лабораторный практикум
- 2.5.2.1. Лабораторные работы (очная форма обучения)
- 2.5.2.2. Лабораторные работы (очно-заочная форма обучения)
- 2.5.2.3. Лабораторные работы (заочная форма обучения)
- 2.6. Балльно-рейтинговая система оценки знаний
- 3. Информационные ресурсы дисциплины
- 3.1. Библиографический список
- 3.2. Опорный конспект Методические указания к изучению дисциплины
- Введение
- Вопросы для самопроверки
- Раздел 1. Автоматизация технологических процессов на базе локальных средств
- Тема 1.1. Автоматизированный технологический процесс в машиностроении
- Вопросы для самопроверки по теме 1.1
- Тема 1.2. Оборудование автоматизированных производств
- 1.2.1. Управление технологическим оборудованием
- Вопросы для самопроверки по теме 1.2
- Тема 1.3. Автоматизация процессов сборки
- Вопросы для самопроверки по теме 1.3
- Раздел 2. Комплексная автоматизация производственных систем обработки
- Тема 2.1. Гибкие производственные системы
- Вопросы для самопроверки по теме 2.1
- Тема 2.2. Автоматизированные транспортно-складские системы
- Складские системы
- Транспортные системы
- Вопросы для самопроверки по теме 2.2
- Тема 2.3. Система автоматизированного контроля гпс
- Система поддержания работоспособности гпм
- Контроль состояния инструмента в гпм
- Размерный контроль в гпс
- Адаптивное управление процессом обработки
- Вопросы для самопроверки по теме 2.3
- Тема 2.4. Автоматизированная система инструментального обеспечения
- Вопросы для самопроверки по теме 2.3
- Тема 2.5. Автоматизированная система удаления отходов
- Способы дробления стружки
- Система стружкоудаления
- Вопросы для самопроверки по теме 2.5
- Раздел 3. Моделирование работы технологических систем
- Тема 3.1. Моделирование процессов обработки резанием
- Вопросы для самопроверки по теме 3.1
- Тема 3.2. Моделирование работы гпс
- 3.2.1. Основные понятия и классификация систем массового обслуживания
- 3.2.2. Потоки заявок
- 3.2.3. Дисциплины обслуживания
- 3.2.4. Параметры и характеристики смо
- 3.2.5. Одноканальные смо с ограниченным количеством мест в очереди и терпеливыми заявками
- 3.2.6. Многоканальные смо с ограниченным количеством мест в очереди и с нетерпеливыми заявками
- Вопросы для самопроверки по теме 3.2
- Раздел 4. Автоматизация подготовки информационного и программного обеспечения
- Тема 4.1. Информационная подготовка автоматизированных производств
- Основные виды современной компьютерной графики
- Вопросы для самопроверки по теме 4.1
- 4.2. Автоматизированная разработка программного обеспечения процессов обработки изделий
- Передача данных на станок с чпу
- Вопросы для самопроверки по теме 4.2
- Раздел 5. Автоматические линии
- Тема 5.1. Автоматические линии последовательного действия
- Вопросы для самопроверки по теме 5.1
- Тема 5.2. Автоматические линии параллельного действия
- Вопросы для самопроверки по теме 5.2:
- Тема 5.3. Автоматические и линии последовательно-параллельного действия
- Вопросы для самопроверки по теме 5.3
- Раздел 6. Интегрированные системы автоматизации и управления технологическими процессами, производствами и предприятиями
- Тема 6.1. Основы построения интегрированных систем управления
- Планирование производства
- Диспетчирование
- Оперативное управление
- Вопросы для самопроверки по теме 6.1
- Тема 6.2. Автоматизированные системы управления технологическими процессами
- Вопросы для самопроверки по теме 6.2
- Тема 6.3. Системы автоматизации управления предприятиями
- 6.3.1. Информационная поддержка жизненного цикла продукта cals-технологии
- Вопросы для самопроверки
- Заключение
- 3.3. Глоссарий (краткий словарь терминов)
- 3.4. Технические средства обеспечения дисциплины
- 3.5. Методические указания к выполнению лабораторных работ
- Лабораторная работа №1
- Расчет уровня автоматизации технологического оборудования
- Со средствами автоматизации
- Цель работы
- 2. Содержание лабораторной работы
- 3. Порядок проведения лабораторной работы
- 3. Содержание лабораторной работы
- Порядок выполнения работы
- 3. Порядок выполнения лабораторной работы
- 4. Содержание отчета
- 3.6. Методические указания к проведению практических занятий
- 3. Порядок выполнения работы
- 4. Содержание отчета
- 4. Блок контроля освоения дисциплины
- 4.1. Общие указания
- 1. Задание на курсовую работу и методические указания к ее выполнению.
- 2. Блок тестов текущего контроля.
- 3. Блок итогового контроля.
- 4.2. Задание на курсовую работу и методические указания к ее выполнению
- 4.2.1. Задание на курсовую работу
- Маршрут перемещения элемента материального потока
- 4.2.2. Методические указания к выполнению курсовой работы
- 4.3. Текущий контроль Тренировочные тесты Тест №1 (по разделу 1)
- Тест №2 (по разделу 2)
- Тест №3 (по разделу 3)
- Тест №4 (по разделу 4)
- Тест №5 (по разделу 5)
- Тест №6 (по разделу 6)
- 4.4. Итоговый контроль
- 4.4.1. Вопросы для подготовки к экзамену
- Министерство образования и науки рф
- Курсовая работа
- Содержание
- 191186, Санкт-Петербург, ул. Миллионная, 5