3. Порядок проведения лабораторной работы
1. Открыть программу MatLab.
2. Открыть файл LRСМОO2.
3. Открыть окно параметров первого генератора временного потока заявок Band-Limited White Noise1 и установить их следующие значения:
мощность шума Noise power [0.1];
эталонное время Sample time 3.0;
код вида случайной временной последовательности потока заявок Seed [50].
4. Открыть окно параметров второго генератора временного потока заявок Band-Limited White Noise2 и установить их следующие значения:
мощность шума Noise power [0.1];
эталонное время Sample time 2.8;
код вида случайной временной последовательности потока заявок Seed [50].
Таблица № 2.1
Характеристики СМО
Sample Time. Первый поток | Sample Time. Второй поток | 1 | 2 | 1 | 2 | 1 | 2 | | Rmax1 | Rmax2 |
3.0 | 2.8 |
|
|
|
|
|
|
|
|
|
2.8 | 2.6 |
|
|
|
|
|
|
|
|
|
2.6 | 2.4 |
|
|
|
|
|
|
|
|
|
2.4 | 2.2 |
|
|
|
|
|
|
|
|
|
2.2 | 2.0 |
|
|
|
|
|
|
|
|
|
2.0 | 1.8 |
|
|
|
|
|
|
|
|
|
1.8 | 1.6 |
|
|
|
|
|
|
|
|
|
1.6 | 1.4 |
|
|
|
|
|
|
|
|
|
1.4 | 1.2 |
|
|
|
|
|
|
|
|
|
1.2 | 1.0 |
|
|
|
|
|
|
|
|
|
5. Включить процесс моделирования, нажав кнопку ► в командной строке первого окна (окно модели СМО).
Результаты моделирования занести в табл. № 2.1. Значения 1, 2, 1, 2, 1, 2 и определяются по показаниям дисплеев. Значения rmax1 и rmax2 определяются по экрану виртуального осциллографа Scope как максимальные мгновенные значения заявок в очередях. Если показание количества заявок в очереди выходит за пределы поля осциллографа, то необходимо щелкнуть левой клавишей по кнопке “бинокль”.
Повторить пункты 3…5 при новых значениях эталонного времени Sample time генераторов временных потоков заявок Band-Limited White Noise1 и Band-Limited White Noise1, как указанно в табл. № 2.1.
Построить график изменения rmax1 и rmax2 в зависимости от значений суммарной приведенной интенсивности входных потоков заявок .
Содержание отчета
В отчете по лабораторной работе необходимо представить следующие материалы.
1. Характеристики СМО, сведенные в табл. № 2.1.
2. График зависимости rmax1 и rmax2 от .
3. Краткое пояснение графика.
ЛАБОРАТОРНАЯ РАБОТА № 3
РАБОТА В СРЕДЕ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ КОМПАС
1. Цель работы
Ознакомиться с основными возможностями САПР конструкторского назначения «Компас» и создать эскиз детали.
2. Общие сведения
Система КОМПАС-3D позволяет реализовать классический процесс трехмерного параметрического проектирования – от идеи к ассоциативной объемной модели, от модели к конструкторской документации.
Основные компоненты КОМПАС-3D – собственно система трехмерного твердотельного моделирования, универсальная система автоматизированного проектирования КОМПАС-График и модуль проектирования спецификаций. Все они легки в освоении, имеют русскоязычные интерфейс и справочную систему.
Система КОМПАС-3D предназначена для создания трехмерных ассоциативных моделей отдельных деталей и сборочных единиц, содержащих как оригинальные, так и стандартизованные конструктивные элементы. Параметрическая технология позволяет быстро получать модели типовых изделий на основе однажды спроектированного прототипа. Многочисленные сервисные функции облегчают решение вспомогательных задач проектирования и обслуживания производства.
Базовый функционал системы включает в себя:
развитый инструментарий трехмерного моделирования;
средства работы над проектами, включающими несколько тысяч подсборок, деталей и стандартных изделий;
функционал моделирования деталей из листового материала – команды создания листового тела, сгибов, отверстий, жалюзи, буртиков, штамповок и вырезов в листовом теле, замыкания углов и т.д., а также выполнения развертки полученного листового тела (в том числе формирования ассоциативного чертежа развертки);
специальные возможности, облегчающие построение литейных форм – литейные уклоны, линии разъема, полости по форме детали (в том числе с заданием усадки);
средства создания поверхностей;
инструменты создания пользовательских параметрических библиотек типовых элементов;
возможность получения конструкторской и технологической документации: встроенная система КОМПАС-График позволяет выпускать чертежи, спецификации, схемы, таблицы, текстовые документы;
возможность простановки размеров и обозначений в трехмерных моделях (поддержка стандарта ГОСТ 2.052–2006 «ЕСКД. Электронная модель изделия»);
поддержку стандарта Unicode;
средства интеграции с различными CAD/CAM/CAE системами;
средства защиты пользовательских данных, интеллектуальной собственности и сведений, составляющих коммерческую и государственную тайну (реализовано отдельным программным модулем КОМПАС-Защита).
Простой интуитивно понятный интерфейс, мощная справочная система и встроенное интерактивное обучающее руководство «Азбука КОМПАС» позволяют освоить работу с системой в кратчайшие сроки и без усилий.
- Автоматизация технологических процессов и производств
- 220200.62.1 – Автоматизация технологических процессов и производств (в машиностроении)
- 1. Информация о дисциплине
- 1.1. Предисловие
- 1.2. Содержание дисциплины и виды учебной работы
- 1.2.1. Содержание дисциплины по гос
- 1.2.2. Объем дисциплины и виды учебной работы
- 1.2.3. Перечень видов практических занятий и контроля
- 2. Рабочие учебные материалы
- 2.1. Рабочая программа (объем 140 часов) Введение (4 часа)
- Раздел 1. Автоматизация технологических процессов на базе локальных средств (28 часов)
- 1.1. Автоматизированный технологический процесс в машиностроении
- 1.2. Оборудование автоматизированных производств
- 1.3. Автоматизация процессов сборки
- Раздел 2. Комплексная автоматизация производственных систем обработки (28 часов)
- 2.1. Гибкие производственные системы
- 2.2. Автоматизированные транспортно-складские системы
- 2.3. Система автоматического контроля гпс
- Раздел 3. Моделирование работы технологических систем
- 3.2. Моделирование работы гпс
- Раздел 4. Автоматизация подготовки информационного и программного обеспечения (16 часов)
- 4.1. Информационная подготовка автоматизированных производств
- 4.2. Автоматизированная разработка программного обеспечения процессов обработки изделий
- Раздел 5. Автоматические линии (20 часов)
- 5.1. Автоматические линии последовательного действия
- 5.2. Автоматические линии параллельного действия
- 5.3. Автоматические линии последовательно-параллельного действия
- Раздел 6. Интегрированные системы автоматизации и управления технологическими процессами, производствами и предприятиями (20 часов)
- 6.1. Основы построения интегрированных систем управления
- 6.2. Автоматизированные системы управления технологическими процессами
- 6.3. Системы автоматизации управления предприятиями
- Заключение (4 часа)
- 2.2. Тематический план дисциплины
- 2.2.1. Тематический план дисциплины для студентов очной формы обучения
- 2.2.2. Тематический план дисциплины для студентов очно-заочной формы обучения
- 2.2.3. Тематический план дисциплины для студентов заочной формы обучения
- 2.3. Структурно-логическая схема дисциплины
- 2.4. Временной график изучения дисциплины при использовании информационно-коммуникационных технологий
- 2 25 .5. Практический блок
- 2.5.1. Практические занятия
- 2.5.1.1. Практические занятия (очная форма обучения)
- 2.5.1.2. Практические занятия (очно-заочная форма обучения)
- 2.5.1.3. Практические занятия (заочная форма обучения)
- 2.5.2. Лабораторный практикум
- 2.5.2.1. Лабораторные работы (очная форма обучения)
- 2.5.2.2. Лабораторные работы (очно-заочная форма обучения)
- 2.5.2.3. Лабораторные работы (заочная форма обучения)
- 2.6. Балльно-рейтинговая система оценки знаний
- 3. Информационные ресурсы дисциплины
- 3.1. Библиографический список
- 3.2. Опорный конспект Методические указания к изучению дисциплины
- Введение
- Вопросы для самопроверки
- Раздел 1. Автоматизация технологических процессов на базе локальных средств
- Тема 1.1. Автоматизированный технологический процесс в машиностроении
- Вопросы для самопроверки по теме 1.1
- Тема 1.2. Оборудование автоматизированных производств
- 1.2.1. Управление технологическим оборудованием
- Вопросы для самопроверки по теме 1.2
- Тема 1.3. Автоматизация процессов сборки
- Вопросы для самопроверки по теме 1.3
- Раздел 2. Комплексная автоматизация производственных систем обработки
- Тема 2.1. Гибкие производственные системы
- Вопросы для самопроверки по теме 2.1
- Тема 2.2. Автоматизированные транспортно-складские системы
- Складские системы
- Транспортные системы
- Вопросы для самопроверки по теме 2.2
- Тема 2.3. Система автоматизированного контроля гпс
- Система поддержания работоспособности гпм
- Контроль состояния инструмента в гпм
- Размерный контроль в гпс
- Адаптивное управление процессом обработки
- Вопросы для самопроверки по теме 2.3
- Тема 2.4. Автоматизированная система инструментального обеспечения
- Вопросы для самопроверки по теме 2.3
- Тема 2.5. Автоматизированная система удаления отходов
- Способы дробления стружки
- Система стружкоудаления
- Вопросы для самопроверки по теме 2.5
- Раздел 3. Моделирование работы технологических систем
- Тема 3.1. Моделирование процессов обработки резанием
- Вопросы для самопроверки по теме 3.1
- Тема 3.2. Моделирование работы гпс
- 3.2.1. Основные понятия и классификация систем массового обслуживания
- 3.2.2. Потоки заявок
- 3.2.3. Дисциплины обслуживания
- 3.2.4. Параметры и характеристики смо
- 3.2.5. Одноканальные смо с ограниченным количеством мест в очереди и терпеливыми заявками
- 3.2.6. Многоканальные смо с ограниченным количеством мест в очереди и с нетерпеливыми заявками
- Вопросы для самопроверки по теме 3.2
- Раздел 4. Автоматизация подготовки информационного и программного обеспечения
- Тема 4.1. Информационная подготовка автоматизированных производств
- Основные виды современной компьютерной графики
- Вопросы для самопроверки по теме 4.1
- 4.2. Автоматизированная разработка программного обеспечения процессов обработки изделий
- Передача данных на станок с чпу
- Вопросы для самопроверки по теме 4.2
- Раздел 5. Автоматические линии
- Тема 5.1. Автоматические линии последовательного действия
- Вопросы для самопроверки по теме 5.1
- Тема 5.2. Автоматические линии параллельного действия
- Вопросы для самопроверки по теме 5.2:
- Тема 5.3. Автоматические и линии последовательно-параллельного действия
- Вопросы для самопроверки по теме 5.3
- Раздел 6. Интегрированные системы автоматизации и управления технологическими процессами, производствами и предприятиями
- Тема 6.1. Основы построения интегрированных систем управления
- Планирование производства
- Диспетчирование
- Оперативное управление
- Вопросы для самопроверки по теме 6.1
- Тема 6.2. Автоматизированные системы управления технологическими процессами
- Вопросы для самопроверки по теме 6.2
- Тема 6.3. Системы автоматизации управления предприятиями
- 6.3.1. Информационная поддержка жизненного цикла продукта cals-технологии
- Вопросы для самопроверки
- Заключение
- 3.3. Глоссарий (краткий словарь терминов)
- 3.4. Технические средства обеспечения дисциплины
- 3.5. Методические указания к выполнению лабораторных работ
- Лабораторная работа №1
- Расчет уровня автоматизации технологического оборудования
- Со средствами автоматизации
- Цель работы
- 2. Содержание лабораторной работы
- 3. Порядок проведения лабораторной работы
- 3. Содержание лабораторной работы
- Порядок выполнения работы
- 3. Порядок выполнения лабораторной работы
- 4. Содержание отчета
- 3.6. Методические указания к проведению практических занятий
- 3. Порядок выполнения работы
- 4. Содержание отчета
- 4. Блок контроля освоения дисциплины
- 4.1. Общие указания
- 1. Задание на курсовую работу и методические указания к ее выполнению.
- 2. Блок тестов текущего контроля.
- 3. Блок итогового контроля.
- 4.2. Задание на курсовую работу и методические указания к ее выполнению
- 4.2.1. Задание на курсовую работу
- Маршрут перемещения элемента материального потока
- 4.2.2. Методические указания к выполнению курсовой работы
- 4.3. Текущий контроль Тренировочные тесты Тест №1 (по разделу 1)
- Тест №2 (по разделу 2)
- Тест №3 (по разделу 3)
- Тест №4 (по разделу 4)
- Тест №5 (по разделу 5)
- Тест №6 (по разделу 6)
- 4.4. Итоговый контроль
- 4.4.1. Вопросы для подготовки к экзамену
- Министерство образования и науки рф
- Курсовая работа
- Содержание
- 191186, Санкт-Петербург, ул. Миллионная, 5