logo search
Пособие1 законченное

1.1. Обзор методов обработки алмазов.

Методы обработки алмазов основываются на физико-химических свойствах, присущих алмазам. Исследовательские работы по совершенствованию различных методов обработки алмазов связаны с поисками путей повышения рентабельности и снижения затрат на изготовления каждого одного карата высококачественной готовой продукции при серийном производстве бриллиантов.

Процесс обработки алмаза заключается в удалении части материала.

Это может происходить за счет механического, термического, химического или комбинированного воздействии.

Технологический процесс обработки алмазов в бриллианты включает три стадии:

-распиливание алмазов на части с целью рационального использования алмазного сырья и повышения процента выхода «годной» продукции;

-обточку (обдирку) алмазов по форме близкой к будущему бриллианту, необходимой для последующей огранки со съемом минимального припуска;

-огранку , выполняемую в две стадии:

1. Шлифование со съемом основной массы кристалла для образования на поверхности заготовки граней определенной формы;

2. Полирование с приданием отшлифованным поверхностям зеркального блеска со снятием рисок, оставшихся от шлифования.

Исследовательские работы по поиску путей повышения рентабельности при изготовления изделий из алмазов ведутся на всех технологических переходах обработки алмазов с применением различных методов воздействия.

При механическом воздействия происходит разрушение кристаллов алмазов по плоскостям спайности из-за существенной анизотропии физико-механических свойств алмаза. Разрушение может происходить за счет сжатия, изгиба или растяжения в зависимости от градиента приложенного напряжения.

Химическое воздействие при нормальной температуре (293К) невозможно т.к. при температурах до 800-900К алмаз химически инертен и не поддается действию даже таких кислот как плавиковая, серная, азотная и др. при высоких концентрациях. При температуре больше 900К алмаз приобретает некоторую химическую активность т.к. начинает переходить в другое аллотропное состояние.

Температурное воздействие. При нагревании свыше 900К алмаз начинает менять свои свойства. Твердость алмаза уменьшается при увеличении температуры, также повышается его химическая активность. Это свойство алмаза широко используется при его полировке.

При локальном воздействии температуры можно произвести размерную обработку. Локальная температура создается лучом лазера или электронным лучом. Под её влиянием в зоне воздействия алмаз превращается в углерод, который, соединяясь с кислородом из воздуха, удаляется из зоны обработки.

Комбинированное воздействие. Процесс механической обработки алмазов абразивным инструментом является по существу комбинированным, потому что в нем присутствуют и механическое и термическое и химическое воздействие на обрабатываемую поверхность, т.к. применяемые в настоящее время методы обработки алмазов как правило сопровождается повышением температуры в зоне резания: при распиливании 600К-700К, при огранке 700К-900К и более. Температурный фактор обработки повышает химическую активность алмаза, способствует его графитизации, приводит к росту адгезионной способности аморфного углерода.

Для усовершенствования процесса обработки алмазов возможен подбор химического состава материала обрабатывающего инструмента, например ограночного диска или ввода в зону резания химически активных с углеродом элементов.

При наложении ультразвуковых колебаний на зону обработки алмаза происходит интенсификация процесса съема массы алмаза. В среднем эффективность процесса растет на 10-15%.

Использование в гранильном производстве электроэрозионной обработки, не получило широкого применения из-за серьезных технических проблем при обеспечении электропроводящих свойств поверхности и сложности применяемого оборудования.

Анализ существующих методов обработки алмазов в бриллианты показывает, что в настоящее время единственным универсальным и наиболее перспективным методом огранки алмазов является алмазоабразивная механическая обработка.

Остальные методы на данный момент серьезного практического значения не имеют из-за низкой производительности и сложного технологического оборудования за исключением лазерной размерной обработки алмаза на предварительных операциях. Однако лазерная технология не способна решить проблемы повышения эффективности заключительных операций обработки бриллиантов, особенно наиболее трудоемкой операции огранки. Это связано с тем, что лучевые методы обработки не обеспечивают требуемых параметров качества поверхностного слоя и точности формы бриллианта. Поэтому повышение эффективности алмазоабразивной механической обработки является актуальной научно-технической проблемой современного производства по обработке алмазов в бриллианты.

На протяжении всего времени существования гранильного производства в России имеет место непрерывное совершенствование существующей и создание новой технологии и оборудования, прежде всего направленного на решение проблемы автоматизации ограночных операций и на исключение ручного труда огранщика на финишных стадиях обработки.

Недостатком существующей технологии с ручной огранкой на финишных стадиях обработки алмазов является привязанность огранщика к одному алмазу. На станках с ручным управлением и визуальным контролем точности и качества поверхностей изделий режимы обработки определяются органами чувств оператора- огранщика методом проб и ошибок. Процесс обработки при этом объективно и полностью не контролируется и не управляется, так как в конечном итоге он зависит от квалификации огранщика.

Для повышения эффективности обработки алмазного сырья в СКТБ «Кристалл» (г.Смоленск) создаются автоматизированные распиловочные комплексы АРК-1, АРК-2 и более модернизированный комплекс АРК-3, имеющий более высокую чувствительность датчиков синхронизации включения микроподачи в наиболее оптимальном диапазоне скоростей и более точной ориентировкой кристалла по линии распиливания.

Для повышения эффективности операции обдирки большинство заводов оснащены обдирочными станками ШП-6 и АИЦ 34-006, полуавтоматами СОМ-1, их аналогами ЛЗ-270, а также станками СОМ-2, СОМ-3В.

Дальнейшие работы по совершенствованию процесса обдирки связаны с разработкой управляющих программ, задающих параметры обдирки и последующих операций с гибкой технологической схемой обработки кристаллов, а также создание автоматизированного обдирочного оборудования с ЧПУ, комплексно решающего проблемы повышения эффективности обработки сырья на основе компьютерных технологий.

Процесс огранки (шлифование и полирование) алмазов является наиболее ответственным, трудоемким и многочисленным по количеству персонала в существующем технологическом процессе обработки алмазов, кроме того развитие медицины и электроники предъявляет более высокие требования к размерам, качеству поверхности и получению оптических классов чистоты монокристаллов алмазов чем при огранке алмазов в бриллианты.

В настоящее время на финишных стадиях процесса огранки алмазов используется ручной труд высококвалифицированных огранщиков. Станки для ручного шлифования и полирования алмазов служат для привода во вращение шлифовального диска, на который наносится шаржированный алмазный порошок различной зернистости по поясам шлифования и полирования. Подача на диск производится вручную с помощью приспособления, управляемого оператором, который выбирает «мягкое» направление шлифования и контролирует размер кристалла, руководствуясь своими органами чувств; поэтому решающая роль в качестве получаемого бриллианта зависит от квалификации огранщика и его субъективного самочувствия в процессе работы. При ручной обработке возникают такие погрешности, как неправильность геометрических форм, несоответствие размеров, несходимость граней в одну точку. Поэтому к операциям огранки на финишных стадиях привлекают огранщиков высокой квалификации.

В Российском гранильном производстве была предпринята попытка использовать для автоматизации финишных стадий огранки алмазов станки типа «Малютка», в которых съем припуска с каждой грани осуществлялся на определенной частоте вращения ограночного диска в течение фиксированного времени. Затем оправка в автоматическом режиме осуществляла деление на другую грань и аналогично осуществлялась обработка следующей грани. Однако изделия, полученные на этих станках, не соответствовали техническим требованиям по геометрической точности и сходимости граней в одну точку, т.к. при использовании фиксированного (заранее заданного) времени съема припуска невозможно учесть всех факторов, в том числе влияние изменения остроты режущих зерен ограночного диска в связи с их размерным износом.

Кроме того, и при огранке алмазов вручную, и при использовании станков «Малютка» шлифовка кристаллов осуществляется только в «мягком» направлении, что даёт гораздо худшее качество обрабатываемой поверхности, неприемлемое для изделий микроэлектронной техники. Обработка таких изделий требует огранку алмазов осуществлять только в «твердом» направлении (при этом вероятность дефектов полностью исключается). Однако существующая технология и оборудование для осуществления этого процесса не отвечают этим требованиям.

В настоящее время в процессе огранки используют различного вида манипуляторы серии УП с программным управлением, которые позволяют поднять производительность труда и избавить квалифицированных огранщиков от монотонного труда по «снятию массы».

На одном станке с использованием указанных манипуляторов с ЧПУ может быть произведена одновременная обработка до четырех алмазов. При этом все алмазы одновременно шлифуются только в «мягком» направлении. Момент окончания процесса огранки каждого алмаза для его отвода от ограночного диска, делительного поворота на обработку следующей грани, подвода в зону обработки и поиск «мягкого» направления контролируется огранщиком. Каждый обрабатываемый на таком станке полуфабрикат затем подвергают финишной стадии огранки, которую осуществляют вручную.

Последние достижения в повышении точности механической обработки сделали возможным обрабатывать хрупкие материалы так, что преобладающим механизмом удаления материала становится не хрупкое разрушение, а пластическое течение. Этот процесс известен как шлифование в режиме пластичности. Когда хрупкие материалы шлифуют в режиме пластической деформации, получается поверхность примерно с такими же характеристиками как после полирования или притирки. Однако в отличии от них микрошлифование - это регулируемый процесс, пригодный для обработки высокоточных изделий и деталей сложной формы.

Эта принципиально новая технология, сущность которой состоит в самонастраивающемся компьютерном управлении при реализации модели физической мезомеханики дискретного, пластичного и размерно-регулируемого микрорезания твердоструктурных кристаллов и минералов (алмазов) на основе информации об упругих деформациях в обрабатывающей системе, реализована в станочном модуле с ЧПУ модели АН-12ф4, созданном в АОЗТ «АНКОН».