logo
Учебное пособие Введение в теплоэнергетикус грифом УМО

8.3. Современные паровые турбины

Для понимания места и роли паровых турбин рассмотрим их общую классификацию. Из большого разнообразия используемых паровых турбин, прежде всего можно выделить турбины транспортные и стационарные.

Транспортные паровые турбины чаще всего используются для привода гребных винтов крупных судов.

Стационарные паровые турбины – это турбины, сохраняющие при эксплуатации неизменным свое местоположение. Мы будем рассматривать только стационарные паровые турбины.

В свою очередь стационарные паровые турбины можно классифицировать по ряду признаков.

1. По назначению различают турбины энергетические, промышленные и вспомогательные.

Энергетические турбины служат для привода электрического генератора, включенного в энергосистему, и отпуска тепла крупным потребителям, например жилым районам, городам и т.д. Их устанавливают на крупных ГРЭС, АЭС и ТЭЦ. Энергетические турбины характеризуются, прежде всего, большой мощностью, а их режим работы – постоянной частотой вращения, определяемой постоянством частоты сети.

Основным производителем энергетических паровых турбин в России является Ленинградский металлический завод (Санкт-Петербург). Он выпускает мощные паровые турбины для ТЭС (мощностью 1200, 800, 500, 300 и 200 МВт), ТЭЦ (мощностью 180, 80 и 50 МВт и менее), АЭС (мощностью 1000 МВт).

Другим крупным производителем энергетических паровых турбин является Турбоматорный завод (ТМЗ, г. Екатеринбург). Он выпускает только теплофикационные турбины (мощностью 250, 185, 140, 100 и 50 МВт и менее).

На ТЭС России установлено достаточно много мощных паровых турбин Харьковского турбинного завода (ХТЗ, Украина) (мощностью 150, 300 и 500 МВт). Им же произведены все паровые турбины, установленные на АЭС России мощностью 220, 500 и 1000 МВт.

Таким образом, в настоящее время в России функционирует всего два производителя мощных паровых турбин. Если говорить о зарубежных производителях турбин, то их число также является небольшим. Большинство из них являются транснациональныими объединениями. В Европе главными производителями паровых турбин являются компании Siemens (Германия), Acea Brown Bovery (ABB, германско-швейцарское объединение), GEC- Alsthom (англо-французское объединение), Scoda (Чехия). В США производителями мощных энергетических турбин являются компании General Electric и Westinghouse, в Японии – Hitachi, Toshiba, Mitsubisi. Все перечисленные производители выпускают паровые турбины вплоть до мощности 1000 МВт и выше. Технический уровень некоторых из них не только не уступает нашим производителям, но и превосходит их.

Промышленные турбины также служат для производства тепловой и электрической энергии, однако их главной целью является обслуживание промышленного предприятия, например, металлургического, текстильного, химического, сахароваренного и др. Часто генераторы таких турбин работают на маломощную электрическую сеть, а иногда используются для привода агрегатов с переменной частотой вращения, например воздуходувок доменных печей. Мощность промышленных турбин существенно меньше, чем энергетических. Основным производителем промышленных турбин в России является Калужский турбинный завод (КТЗ)

Вспомогательные турбины используются для обеспечения технологического процесса производства электроэнергии – обычно для привода питательных насосов и воздуходувок котлов.

Питательные насосы энергоблоков мощностью вплоть до 200 МВт приводятся электродвигателями, а мощностью выше – с помощью паровых турбин, питаемых паром из отбора главной турбины, Например, на энергоблоках мощностью 800 и 1200 МВт установлено соответственно по два и три турбонасоса мощностью 17 МВт каждый, на энергоблоках мощностью 250 (для ТЭЦ) и 300 МВт – один питательный турбонасос мощностью 12 МВт; на энергоблоках мощностью 1000 МВт для АЭС используется два питательных насоса мощностью 12 МВт.

Котлы энергоблоков мощностью 800 и 1200 МВт оборудованы соответственно двумя и тремя воздуходувками, привод которых осуществляется также паровыми турбинами мощностью по 6 МВт каждая. Основным производителем вспомогательных паровых турбин в России является КТЗ.

2. По виду энергии, получаемой от паровой турбины, их делят на конденсационные и теплофикационные.

В конденсационных турбинах (типа К) пар из последней ступени отводится в конденсатор, они не имеют регулируемых отборов пара, хотя, как правило, имеют много нерегулируемых отборов пара для регенеративного подогрева питательной воды, а иногда и для внешних тепловых потребителей. Главное назначение конденсационных турбин – обеспечивать производство электроэнергии, поэтому они являются основными агрегатами мощных ТЭС и АЭС. Мощность самых крупных конденсационных турбоагрегатов достигает 1000 – 1500 МВт.

Теплофикационные турбины имеют один или несколько регулируемых отборов пара, в которых поддерживается заданное давление. Они предназначены для выработки тепловой и электрической энергии, и мощность самой крупной из них составляет 250 МВт. Теплофикационная турбина может выполняться с конденсацией пара и без нее. В первом случае она может иметь отопительные отборы пара (турбина типа Т) для нагрева сетевой воды для обогрева зданий, предприятий и т.д., или производственный отбор пара (турбины типа П) для технологических нужд промышленных предприятий, или тот и другой отборы (турбины типа ПТ и ПР). Во втором случае турбина носит название турбины с противодавлением (турбина типа Р). В ней пар из последней ступени направляется не в конденсатор, а обычно производственному потребителю. Таким образом, главным назначение турбины с противодавлением является производство пара заданного давления (в пределах 0,3 – 3 Мпа). Турбина с противодавлением может также иметь и регулируемый теплофикационный или промышленный отбор пара, и тогда она относится к типу ТР или ПР.

3. По используемым начальным параметрам пара паровые турбины можно разделить на турбины докритического и сверхкритического начального давления, перегретого и насыщенного пара, без промежуточного перегрева и с промежуточным перегревом пара.

Как уже известно критическое давление для пара составляет примерно 22 МПа, поэтому все турбины, начальное давление пара перед которыми меньше этого значения, относятся к паровым турбинам докритического начального давления. В России стандартное докритическое давление для паровых турбин выбрано равным 130 ат (12,8 МПа), кроме того, имеется определенный процент турбин на начальное давление 90 ат (8,8 МПа). На докритические параметры выполняются все паровые турбины для АЭС и ТЭЦ ( кроме теплофикационной турбины мощностью 250 МВт), а также турбины мощностью менее 300 МВт для ТЭС. Докритическое начальное давление зарубежных паровых турбин обычно составляет 16–17 МПа, а максимальная единичная мощность достигает 600–700 МВт.

Все мощные конденсационные энергоблоки (300, 500, 800, 1200 МВт), а также теплофикационный энергоблок мощностью 250 МВт выполняют на сверхкритические параметры пара (СКД) – 240 ат (23,5 МПа) и 540 оС. Переход от докритических параметров пара к сверхкритическим позволяет экономить 3–4% топлива.

Все турбины ТЭС и ТЭЦ работают перегретым паром, а АЭС – насыщенным (с небольшой степенью влажности).

Все мощные конденсационные турбины на докритические и сверхкритические параметры пара выполняют с промежуточным перегревом. Из теплофикационных турбин только турбина ЛМЗ на докритические параметры мощностью 180 МВт и турбина ТМЗ на СКД мощностью 250 МВт имеют промежуточный перегрев. Устаревшие конденсационные турбины мощностью 100 МВт и менее и многочисленные теплофикационные паровые турбины вплоть до мощности 185 МВт строятся без промперегрева.

4. По зоне использования турбин в графике электрической нагрузки паровые турбины можно разделить на базовые и полупиковые. Базовые турбины работают постоянно при номинальной нагрузке или близкой к ней. Они проектируются так, чтобы и турбина, и турбоустановка имели максимально возможную экономичность. К этому типу турбин следует, безусловно, отнести атомные и теплофикационные турбины. Полупиковые турбины создаются для работы с периодическими остановками на конец недели (с ночи пятницы до утра в понедельник) и ежесуточно (на ночь). Полупиковые турбины (и турбоустановки) с учетом их малого числа часов работы в году выполняют более простыми и соответственно более дешевыми (на сниженные параметры пара, с меньшим числом цилиндров). Электроэнергетика России в силу ряда причин всегда страдала от недостатка в энергосистеме полупиковых мощностей. Примерно 25 лет назад ЛМЗ спроектировала полупиковую конденсационную турбину мощностью 500 МВт на параметры 12,8 МПа, 510 оС/ 510 оС. Головной образец этой турбины предполагалось установить на Лукомльской ГРЭС (Белоруссия). Однако до сих пор ни одной специальной полупиковой турбины в России не работает. Вместе с тем в Японии и США работают десятки полупиковых турбин упрощенной конструкции.

5. По конструктивным особенностям паровые турбины можно классифицировать по числу цилиндров, частоте вращения и числу валопроводов.

По числу цилиндров различают турбины одно и многоцилиндровые. Количество цилиндров определяется объемным пропуском пара в конце процесса расширения. Чем меньше плотность пара, т.е. меньше его конечное давление, и чем больше мощность турбины, т.е. больше массовый расход, тем больше объемный пропуск и соответственно требуемая площадь для прохода пара через рабочие лопатки последней ступени. Однако если рабочие лопатки делать длиннее, а радиус их вращения больше, то центробежные силы, отрывающие профильную часть лопатки, могут возрасти настолько, что лопатка оторвется. Поэтому с увеличением мощности сначала переходят на двухпоточный ЦНД, а затем увеличивают их число. Конденсационные турбины можно выполнить одноцилиндровыми вплоть до мощности 50–60 МВт, двухцилиндровыми – до 100–150 МВт, трехцилиндровыми – до 300 МВт, четырехцилиндровыми – до 500 МВт, пятицилиндровыми – вплоть до 1300 МВт.

По частоте вращения турбины делятся на быстроходные и тихоходные. Быстроходные турбины имеют частоту вращения 3000 об/мин = 50 об/с. Они приводят электрогенератор, ротор которого имеет два магнитных полюса, и поэтому частота вырабатываемого им тока равна 50 Гц. На эту частоту строят большинство паровых турбин для ТЭС, ТЭЦ и частично для АЭС в нашей стране и почти во всем мире. В Северной Америке и на части территории Японии быстроходные турбины строят на частоту вращения 3600 об/мин = 60 об/с, так как там принятая частота сети равна 60 Гц.

Поскольку из-за низких начальных параметров работоспособность пара в турбинах АЭС мала, а снижение капитальных затрат требует увеличения мощности, т.е. массы пропускаемого пара, то объемный расход на выходе из турбины оказывается столь значительным, что оказывается целесообразным переход на меньшую частоту вращения. Так как число магнитных полюсов в электрогенераторе должно быть целым и четным, то переход на использование четырехполюсного электрогенератора и получения той же частоты сети, что и при двухполюсном электрогенераторе, требует снижения частоты вдвое. Таким образом, тихоходные турбины в нашей стране имеют частоту вращения 1500 об/мин = 25 об/с.

По числу валопроводов различают турбины одновальные (имеющие один валопровод – соединенные муфтами роторы отдельных цилиндров и генератора) и двухвальные (имеющие два валопровода каждый со своим генератором и связанные только потоком пара). На российских тепловых электростанциях используют только одновальные турбины (в начале 70-х годов на Славянской ГРЭС на Украине построена единственная двухвальная турбина мощностью 800 МВт, да и то потому, что в то время не было электрогенератора мощностью 800 МВт).

Для обозначения типов турбин ГОСТ предусматривает специальную маркировку, состоящую из буквенной и числовой частей. Буквенная часть указывает тип турбины, следующее за ней число – номинальную мощность турбины в мегаваттах. Если необходимо указать и максимальную мощность турбины, то ее значение приводят через косую черту. Следующее число указывает номинальное давление пара перед турбиной в МПа: для теплофикационных турбин далее через косую черту указывают давление в отборах или противодавление в МПа. Наконец, последняя цифра, если она имеется, указывает номер модификации турбины, принятый на заводе-изготовителе.

Приведем несколько примеров обозначений турбин.

Турбина К-210-12,8-3 – типа К, номинальной мощностью 210 МВт с начальным абсолютным давлением пара 12,8 МПа (130 кгс/см2), третьей модификации.

Турбина П-6-3,4/0,5 – типа П, номинальной мощностью 6 МВт, с начальным абсолютным давлением пара 3,4 МПа и абсолютным давлением отбираемого пара 0,5 МПа.

Турбина Т-110/120-12,8 – типа Т, номинальной мощностью 110 МВт и максимальной мощностью 120 МВт, с начальным абсолютным давлением пара 12,8 МПа.

Турбина ПТ-25/30-8,8/1 – типа ПТ номинальной мощностью 25 МВт и максимальной мощностью 30 МВт, с начальным абсолютным давлением пара 8,8 МПа (90 ат) и абсолютным давлением отбираемого пара 1 МПа.

Турбина Р-100/105-12,8/1,45 – типа Р, номинальной мощностью 100 МВт максимальной мощностью 105 МВт, с начальным абсолютным давлением пара 12,8 МПа и абсолютным противодавлением 1,45 МПа.

Турбина ПР-12/15-8,8/1,45/0,7 – типа ПР, номинальной мощностью 12 МВт и максимальной мощностью 15 МВт, с начальным абсолютным давлением пара 8,8 МПа, давлением в отборе 1,45 МПа и противодавлением 0,7 МПа.