logo
Учебное пособие Введение в теплоэнергетикус грифом УМО

7.1. Истечение газов и паров

Если в цилиндре А (рис. 7.1.) с насадкой С находится газ под давлением более высоким, чем давление окружающей среды, то через эту насадку будет происходить истечение заключенного в цилиндре газа наружу.

Рис. 7.1. Истечение газа из сопла

При этом оказывается, что по мере движения по насадке давление газа постепенно понижается, а скорость – возрастает, т. е. происходит превращение потенциальной энергии в кинетическую. Такие насадки, в которых происходит преобразование потенциальной энергии протекающего по ним газа в кинетическую, называются соплам

и.

При некоторых условиях, когда к насадке подводится газ с большой скоростью, может происходить обратный процесс, при котором скорость газа по мере движения по насадке постепенно уменьшается, а давление его увеличивается, т. е. происходит преобразование кинетической энергии в потенциальную. Такие насадки называют диффузорами.

Рассмотрим сначала процесс истечения газа через суживающееся сопло из цилиндра А (см. рис. 7.1.), в котором поддерживается постоянное давление Р1 – большее, чем давление Р2 окружающей среды.

Допустим, что перед истечением газ находился в состоянии покоя, а в процессе истечения пришел в движение и приобрел в сечении ab скорость w. В этом случае потенциальная энергия газа перешла в кинетическую, равную , гдеm – масса вытекающего газа. Допустим также для простоты, что количество вытекающего из сопла газа равно 1 кг, при этом и кинетическая энергия вытекающей струи в сеченииab будет, очевидно, .

При вытекании из цилиндра 1 кг газа поршень В опустился на величину s1 м. Величина совершенной при этом работы выталкивания

l1 = P1 f1 s1 кгс·м/кг,

где f1 – площадь поршня В. Но произведение f1 s1 = v1 – удельному объему газа в цилиндре, поэтому

l1 = P1· v1 кгс·м/кг.

Так как наружная среда, в которую происходит истечение, имеет давление Р2, то вытекающий из сопла газ должен преодолевать силу, противодействующую истечению и равную P2 f2, где f2 – площадь выходного отверстия сопла. На преодоление этой силы должна быть затрачена часть работы l1, равная l2 = P2 f2 s2 = P2· v2, где v2 – удельный объем в сечении ab.

При движении газа по соплу от сечения mn до сечения ab (рис. 7.2) давление понизилось от P1 до P2, а удельный объем увеличился от v1 до v2. Таким образом, газ совершил некоторый процесс АВ, в котором была произведена работа расширения l3.

Таким образом, полная работа истечения 1 кг газа

l0 = l1 l2 + l3 кгс·м/кг.

Рис. 7.2. Изображение в осях vP процесса истечения газа через

суживающееся сопло. Здесь P1 – давление газа при входе в сопло, а

P2 – при выходе из него

Вследствие большой скорости истечения время прохождения газа по соплу весьма мало. Поэтому можно считать, что теплообмен между газом и внешней средой через стенки сопла не происходит, и процесс истечения является адиабатным. При этом работа расширения может быть выражена уравнением:

,

где k – показатель адиабаты (для перегретого пара k = 1,3).

Имея в виду полученные выше значения для l1 и l2, можем написать, что

.

или

.

Скорость течения газа из сопла и расход газа увеличиваются с уменьшением отношения , например, с уменьшением давленияна выходе из сопла при постоянном. Опытом было установлено, что если сопло по форме суживающееся (см. рис. 7.2), то давлениев сеченииab может уменьшаться только до известного предела, называемого критическим давлением .