Тепловые свойства газов
Тепловые свойства газов определяются их теплоемкостью, теплопроводностью, теплосодержанием и теплотой сгорания.
Теплоемкостью газа называется его способность при нагревании поглощать теплоту. Теплоемкость газа С можно выразить отношением подведенного к газу количества теплоты ∆Q к изменению температуры ∆Т:
С=lim ∆Q/∆Т,
∆Т→0
Теплоемкость газа представляет собой количество теплоты, необходимое для нагрева газа на 1 К. Единица измерения теплоемкости — Дж/К. Если теплоемкость отнести к количеству газа, то получим удельную теплоемкость.
Удельной теплоемкостью называется отношение подведенного к газу количества теплоты к произведению единицы количества газа и изменения его температуры.
В зависимости от того, что принимается за единицу количества газа, удельная теплоемкость называется массовой ст, Дж/(кг•К), молярной см, Дж/моль•К), объемной СV, Дж/(м3•К). Указанные теплоемкости связаны друг с другом следующими соотношениями:
Cm = CM /M, СV=CM/VM, CM = CmM = CVVM
где М — молярная масса, кг/моль; VM — молярный объем, м3/моль (для идеального газа при стандартных условиях VM ~ 22,4•10-3 м3/моль).
Удельная теплоемкость зависит от температуры. Различают удельные теплоемкости при постоянном объеме сv и при постоянном давлении ср.
Из термодинамики известно, что в случае нагревания газа при постоянном объеме теплота расходуется на увеличение только внутренней энергии. При нагревании газа при постоянном давлении теплота расходуется также и на работу расширения. Следовательно, ср > сv. Для идеального газа работа расширения равна универсальной газовой постоянной R и справедливо уравнение:
ср - сv = R
Отношение удельной теплоемкости при постоянном давлении к удельной теплоемкости при постоянном объеме называется показателем адиабаты
ср / сv = К.
Массовая и объемная теплоемкости с повышением температуры возрастают, а с увеличением молекулярной массы уменьшаются. Показатель адиабаты с повышением температуры и увеличением молекулярной массы уменьшается. Для идеального газа он примерно равен 1,667, для двухатомных газов — 1,41, для трехатомных — 1,34.
Различают истинную с и среднюю с' теплоемкости.
Истинной теплоемкостью называется количество теплоты, необходимое для изменения температуры единицы количества газа на 1 К при данных р и Т или V и Т.
Средняя теплоемкость — это количество теплоты, необходимое для изменения температуры единицы количества газа на 1 К в заданном интервале температур, т.е. от Т1 до Т. Среднюю объемную теплоемкость при постоянном давлении газа можно определить по средним теплоемкостям компонентов и их объемным долям:
с'р = 0,01 (с'Н2 *Н2+ с'СО *СО+ с'СН4 *СН4 +….+ с'n *N2)
где с'Н2 с'СО с'СН4 с'n — средние объемные теплоемкости указанных в индексах компонентов; Н2, СО, СН4... N2 — объемные доли компонентов, %. Значения средней объемной теплоемкости горючих газов и продуктов сгорания приведены в табл. 5.6.
Теплопроводность газа — это его способность проводить теплоту, т.е. осуществлять молекулярный перенос энергии. Молекулы участков газа, где температура выше, обладают большей энергией и передают ее соседним молекулам, обладающим меньшей энергией. Это приводит к выравниванию разности температур ∆Т, но передача теплоты не связана с переносом частиц.
Таблица 5.6
Средняя объемная теплоемкость при постоянном давлении кДж /(м3К) горючих газов в интервале температур от о до t
Температура, °С | СО | Н2 | H2S | СН4 | С2Н4 | C2H6 | С3Н8 | С4Н10 | С5Н12 |
0 | 1,299 | 1,277 | 1,513 | 1,544 | 1,792 | 2,227 | 3,039 | 4,128 | 5,129 |
100 | 1,302 | 1,292 | 1,543 | 1,653 | 2,031 | 2,525 | 3,450 | 4,517 | 5,837 |
200 | 1,307 | 1,297 | 1,574 | 1,765 | 2,257 | 2,800 | 3,860 | 5,255 | 6,515 |
300 | 1,317 | 1,300 | 1,608 | 1,890 | 2,466 | 3,077 | 4,271 | 5,774 | 7,135 |
400 | 1,329 | 1,302 | 1,644 | 2,019 | 2,658 | 3,333 | 4,681 | 6,268 | 7,742 |
500 | 1,343 | 1,305 | 1,682 | 2,144 | 2,839 | 3,571 | 5,095 | 6,691 | 8,257 |
600 | 1,357 | 1,308 | 1,719 | 2,264 | 3,006 | 3,793 | 5,431 | 7,114 | 8,784 |
700 | 1,372 | 1,312 | 1,756 | 2,381 | 3,157 | 4,003 | 5,724 | 7,486 | 9,232 |
- Федеральное агентство по образованию
- Нефтегазовый комплекс
- Тюмень 2013
- Тема 1. Подготовка нефти и газового конденсата к транспорту и переработке………………………………4
- Тема 1. Подготовка нефти и газового конденсата к транспорту и переработке
- 1.1. Балластные компоненты нефти
- 1.2. Водонефтяная эмульсия. Методы разрушения
- 1.3. Требования, предъявляемые к нефти перед транспортом. Товарная нефть
- Тип нефти
- Группа нефти
- Вид нефти
- Тема 2. Фракционирование нефти. Определение потенциального выхода фракций
- 2.1.Определение потенциального содержания дистиллятных продуктов перегонки нефти с помощью итк.
- 2.2.Технологическая классификация нефти.
- Тема 3. Процессы первичной переработки нефти
- 3.1. Первичная перегонка нефти на промышленных установках
- 3.2. Классификация установок первичной перегонки нефти
- 3.3. Продукты первичной перегонки нефти
- 3.4. Установки вакуумной перегонки мазута
- Тема 4. Основные направления переработки нефти
- 4.1. Выбор варианта переработки нефти
- Тема 5. Основные свойства природных газов
- Физические свойства газов
- Тепловые свойства газов
- Тема 6. Подготовка и переработка газов
- Способы очистки и осушки газов Абсорбционный метод. Основы процесса
- Тема 7. Методы анализа основных показателей качества природного газа Методы газового анализа
- Отбор и хранение газа для анализа
- Определение плотности газа
- Определение влажности газа
- Определение содержания серы в газе
- Определение теплоты сгорания газа
- Литература