Двигатели внутреннего сгорания.
Среди способов увеличения КПД тепловых двигателей один оказался особенно плодотворным. Сущность его состояла в уменьшении потерь теплоты за счет перенесения места сжигания топлива и нагревания рабочего тела внутрь цилиндра. Отсюда и происхождение названия «двигатель внутреннего сгорания» (ДВС). Естественно, что для двигателей внутреннего сгорания наиболее удобным топливом является газообразное или жидкое. Первый двигатель внутреннего сгорания был создан в I860 г. французским инженером Э. Ленуаром. Этот двигатель не имел трубы, топки и котла, но в основном конструктивно не отличался от паровой машины. Вместо пара в цилиндр при движении поршня засасывалась смесь светильного газа и воздуха. КПД первого двигателя внутреннего сгорания был 3,3%. Однако новые двигатели вскоре были значительно усовершенствованы. В 1862 г. французским инженером Боде Роша было предложено использовать в двигателе внутреннего сгорания четырехтактный цикл: всасывание, сжатие, горение и расширение, вы хлоп. Эта идея была использована немецким изобретателем Н. Отто, построившим в 1878 г. первый четырехтактный газовый двигатель внутреннего сгорания. КПД этого двигателя достигал 22%, что превосходило значения, полученные при использовании двигателей всех предшествующих типов.
Карбюраторный двигатель – первый ДВС работающий на бензине. В этом двигателе для более полного сгорания топлива перед впуском в цилиндр его смешивают с воздухом в специальных смесителях, называемых карбюраторами. Воздушно - бензиновую смесь называют горючей смесью. Для полного сгорания смеси на единицу массы бензина должно приходиться не менее 15 единиц массы воздуха. Это означает, что рабочим телом в двигателях внутреннего сгорания фактически является воздух, а не пары бензина. Топливо здесь сжигается для нагревания воздуха. При движении поршня от верхнего положения до нижнего через впускной клапан происходит всасывание горючей смеси в цилиндр. Этот процесс происходит при постоянном давлении. При обратном ходе поршня начинается сжатие горючей смеси. Сжатие происходит быстро, и поэтому процесс близок к адиабатному. В конце такта сжатия происходит воспламенение горючей смеси электрической искрой. Быстрое сгорание паров бензина сопровождается передачей рабочему телу количества теплоты Q1, резким возрастанием температуры и давления воздуха и продуктов сгорания. За короткое время горения смеси поршень практически не изменяет своего положения в цилиндре, поэтому процесс нагревания газа в цилиндре можно считать почти изохорным. Под действием высокого давления поршень далее совершает рабочий ход от верхнего положения до нижнего. Этот процесс расширения рабочего тела близок к адиабатному. В конце рабочего такта открывается выпускной клапан и рабочее тело соединяется с окружающей атмосферой. Выпуск отработанных газов сопровождается передачей количества теплоты Q2 окружающему воздуху, играющему роль охладителя. При длительной работе двигателя описанный цикл повторяется многократно. Но перед началом каждого цикла необходимо освободить цилиндр от продуктов сгорания, не содержащих кислорода, и произвести всасывание горючей смеси. Это осуществляется во время двух подготовительных тактов впуска и выпуска.
Для поршневых двигателей внутреннего сгорания важной характеристикой, определяющей полноту сгорания топлива и значительно влияющей на значение КПД, является степень сжатия горючей смеси. С увеличением степени сжатия возрастает начальная температура горючей смеси в конце такта сжатия, что способствует более полному ее сгоранию. У современных карбюраторных двигателей степень сжатия обычно составляет 8—9. Дальнейшему увеличению степени сжатия препятствует самовоспламенение (детонация) горючей смеси, происходящее еще до того, как поршень достигнет верхней мертвой точки. Это явление оказывает разрушающее действие на двигатель и снижает его мощность и КПД. Достигнуть указанных степеней сжатия без детонации удалось путем увеличения скорости движения поршня при повышении числа оборотов двигателя до 5—6 тыс. об мин и применения бензина со специальными антидетонационными присадками.
Двигатель Дизеля. Чтобы повысить КПД двигателя внутреннего сгорания, немецкий инженер Р. Дизель в 1892 г. предложил использовать еще большие степени сжатия рабочего тела и расширение при постоянном давлении. Высокая степень сжатия без детонации достигается в двигателе Дизеля за счет того, что сжатию подвергается не горючая смесь, а воздух. По окончании процесса сжатия в цилиндр впрыскивается горючее. Для его зажигания не требуется никакого специального устройства, так как при высокой степени адиабатного сжатия воздуха его температура повышается до 600—700 °С. Горючее, впрыскиваемое с помощью топливного насоса через форсунку, воспламеняется при соприкосновении с рас каленным воздухом. Подача топлива управляется особым регулятором, в результате чего процесс горения протекает не столь кратковременно, как в карбюратор ном двигателе. Поэтому часть процесса расширения, пока осуществляется подача топлива, происходит изобарно, а затем адиабатно. При обратном движении поршня осуществляется выпуск. Современные дизели имеют степень сжатия 16—21 и КПД около 40% .
- Основные положения мкт. Доказательство существования молекул. Размеры и масса молекул.
- Строение газообразных, жидких и твердых тел
- Опыт Штерна. Распределение молекул по скоростям
- Идеальный газ. Изопроцессы.
- Абсолютная температурная шкала. Абсолютный нуль температуры.
- Уравнение состояния идеального газа Менделеева - Клапейрона
- Основное уравнение молекулярно-кинетической теории идеального газа
- Внутренняя энергия. Внутренняя энергия идеального газа
- Количество теплоты
- Первый закон термодинамики и его применение к различным процессам
- 1. Изобарный процесс. Работа газа.
- 2. Изохорный процесс. Теорема Майера
- 3. Изотермический процесс
- 4. Адиабатный процесс
- Принцип действия тепловых двигателей. Кпд теплового двигателя
- Испарение и конденсация. Насыщенные и ненасыщенные пары. Парообразование. Конденсация. Испарение.
- Кипение. Удельная теплота парообразования.
- Влажность воздуха
- Поверхностное натяжение жидкостей. Свойства поверхностного слоя жидкости
- Капиллярные явления. Смачивание и несмачивание
- Кристаллические и аморфные тела. Свойства твердых тел
- Сила упругости. Закон Гука. Виды деформаций
- Реальные газы. Уравнение Ван-дер-Ваальса
- Изотерма реального газа. Критическая температура
- Диаграмма состояния вещества.
- Двигатели внутреннего сгорания.
- Паровая и газовая турбины
- Необратимость тепловых процессов. Второй закон термодинамики и его статистический смысл
- Теплоемкость твердых тел.