Строение газообразных, жидких и твердых тел
Существуют четыре агрегатных состояния вещества — твердое, жидкое, газообразное и плазма.
Если минимальная потенциальная энергия WП молекул вещества много меньше средней кинетической энергии их теплового движения WK (т. е. WП << WK), то вещество находится в газообразном состоянии. Если WП ~ WK, то вещество находится в жидком состоянии. Если же WП>> WK, то вещество находится в твердом состоянии.
В газах при не высоких давлениях и не низких температурах молекулы находятся друг от друга на расстояниях, во много раз превышающих их размеры. В таких условиях молекулы газа не связаны между собой межмолекулярными силами притяжения. Они хаотически поступательно движутся по всему объему, занимаемому газом. Взаимодействие молекул газа происходит только при их столкновении между собой и со стенками сосуда, в котором газ находится. Передача импульса при этих столкновениях обусловливает давление, производимое газом. Расстояние, которое молекула проходит между двумя последовательными столкновениями, называют длиной свободного пробега молекул. Если молекулы газа состоят из двух или нескольких атомов, то при столкновении они приобретают вращательное движение. Таким образом, в газах молекулы совершают преимущественно поступательное и вращательное движение.
В жидкостях расстояние между молекулами сравнимо с их эффективным диаметром. Силы взаимодействия молекул друг с другом достаточно велики. Молекулы жидкости колеблются около временных положений равновесия. Однако в жидкостях WП ~ WK, поэтому, получив в результате хаотических столкновений избыток кинетической энергии, отдельные молекулы преодолевают притяжение соседних молекул и переходят в новые положения равновесия, вокруг которых вновь совершают колебательное движение. Время колебания молекул жидкости возле положений равновесия очень мало (порядка 10-10 - 10-12 с), после чего молекулы совершают переход в новые положения. Следовательно, молекулы жидкости совершают колебательное движение вокруг временных центров равновесия и скачкообразно перемещаются из одних положений равновесия в другие (вследствие таких перемещений жидкость обладает текучестью и принимает форму того сосуда, в котором находится). Жидкость состоит из множества микроскопических областей, в которых существует определенная упорядоченность в расположении близлежащих молекул, не повторяющаяся по всему объему жидкости и изменяющаяся с течением времени. Такой вид упорядоченности частиц называют ближним порядком.
В твердых телах расстояние между молекулами еще меньше, чем в жидкостях. Силы взаимодействия молекул твердых тел между собой настолько велики, что молекулы удерживаются относительно друг друга в определенных положениях и колеблются около постоянных центров равновесия. Твердые тела делятся на кристаллические и аморфные. Для кристаллических тел характерны так называемые кристаллические решетки — упорядоченное и периодически повторяющееся в пространстве расположение молекул, атомов или ионов. Если через произвольный узел кристаллической решетки провести прямую в любом направлении, то вдоль этой прямой на равном расстоянии будут встречаться другие узлы этой решетки, т. е. данная структура повторяется по всему объему кристаллического тела. Такой вид упорядоченности частиц называют дальним порядком. В аморфных телах (стекло, смола и ряд других веществ) нет дальнего порядка и кристаллической решетки, что сближает по свойствам аморфные тела с жидкостями. Однако в аморфных телах молекулы колеблются около временных положений равновесия значительно дольше, чем в жидкостях. В твердых телах молекулы совершают преимущественно колебательное движение (хотя имеются и отдельные молекулы, движущиеся поступательно, о чем свидетельствует явление диффузии).
- Основные положения мкт. Доказательство существования молекул. Размеры и масса молекул.
- Строение газообразных, жидких и твердых тел
- Опыт Штерна. Распределение молекул по скоростям
- Идеальный газ. Изопроцессы.
- Абсолютная температурная шкала. Абсолютный нуль температуры.
- Уравнение состояния идеального газа Менделеева - Клапейрона
- Основное уравнение молекулярно-кинетической теории идеального газа
- Внутренняя энергия. Внутренняя энергия идеального газа
- Количество теплоты
- Первый закон термодинамики и его применение к различным процессам
- 1. Изобарный процесс. Работа газа.
- 2. Изохорный процесс. Теорема Майера
- 3. Изотермический процесс
- 4. Адиабатный процесс
- Принцип действия тепловых двигателей. Кпд теплового двигателя
- Испарение и конденсация. Насыщенные и ненасыщенные пары. Парообразование. Конденсация. Испарение.
- Кипение. Удельная теплота парообразования.
- Влажность воздуха
- Поверхностное натяжение жидкостей. Свойства поверхностного слоя жидкости
- Капиллярные явления. Смачивание и несмачивание
- Кристаллические и аморфные тела. Свойства твердых тел
- Сила упругости. Закон Гука. Виды деформаций
- Реальные газы. Уравнение Ван-дер-Ваальса
- Изотерма реального газа. Критическая температура
- Диаграмма состояния вещества.
- Двигатели внутреннего сгорания.
- Паровая и газовая турбины
- Необратимость тепловых процессов. Второй закон термодинамики и его статистический смысл
- Теплоемкость твердых тел.