Основные направления рационального использования
электроэнергии
При рациональном использовании электроэнергии важное значение принадлежит модернизации оборудования, автоматизации процессов в энергоустановках предприятий.
Можно выделить следующие направления рационального использования электроэнергии при осуществлении технологических процессов. Одним из них является выбор энергоносителей. Имеется в виду выбор для отдельной технологии каждого предприятия энергоносителя: электроэнергии, газа, жидкого топлива и др.
Большим резервом экономии электроэнергии являются вторичные энергетические ресурсы. Сюда относят: тепло отходящих газов промышленных печей, котлов; горячие отходы технологических процессов, тепло паровых машин; электрическую и механическую энергию, полученную в качестве побочного продукта.
Рациональное использование электроэнергии может быть достигнуто и за счет интенсификации технологических процессов путем совершенствования действующей, внедрения новой технологии; автоматизации вспомогательных процессов; совершенствования организации производства.
Сокращение потерь энергии в оборудовании и сетях образует следующее направление рационального использования электроэнергии. Оно достигается за счет рациональных схем энергоснабжения, содержания энергетического и технологического оборудования на высоком техническом уровне, использования экономичных режимов работы трансформаторов, двигателей, нагревателей.
Важным мероприятием, направленным на рациональное использование энергии всех видов, является энергетическое нормирование.
Удельной нормой расхода электрознергии называется величина затрат энергии на производство единицы продукции. Различают технологические, цеховые, общезаводские удельные нормы расхода электроэнергии.
Энергия, потребляемая заводом, цехом, станком, состоит из двух частей: постоянной составляющей (я), не зависящей от количества выпускаемой продукции, и переменной составляющей (Ь), зависящей от количества выпускаемой продукции. Тогда общий расход электроэнергии (W) будет равен:
где Л - количество выпускаемой продукции.
Постоянная составляющая расхода энергии (потребление электроэнергии водонасосными, котельными, компрессорными установками, электротранспортом и т. д.) в среднем включает 50 - 60%, а переменная - 50 - 40% от общего расхода энергии.
При увеличении выпуска продукции снижается удельный расход электроэнергии. Это подтверждается выражением:
Вот почему интенсификация процессов систем технологий обусловливает экономию электроэнергии.
Известно, что для рационального использования энергии важное значение имеет выбор энергоносителей.
Широкие возможности для взаимозаменяемости различных энергоносителей и видов топлива (электроэнергия, пар, горячая вода, мазут, газ, уголь) вытекают из централизации электротеплоснабжения в сочетании с газификацией.
Существенная экономия электроэнергии достигается при переводе процессов термообработки, нагрева, сушки на газ, жидкое топливо.
При сравнении различных энергоносителей применяют переводные коэффициенты (эквиваленты) энергии, которые представлены в табл. 1.
Таблица 1
Переводные коэффициенты (эквиваленты) энергии
-
Вид энергии
Обозначение
Размерность
Эквивалент для перевода в
электроэнергию
Тепловую энергию
механическую энергию
условное топливо
нормальный пар
Электроэнергия
W
кВт-ч
1
860
1,36
0,123
1,344
Механическая энергия
L
л-с-ч
0,735
632,3
1
90,4-Ю"3
0,989
Расходу условного топлива
В
кг
8,141
7000
11,06
1
10,13
Расход нормального пара
DH
кг
0,744
640
1,011
91,5-Ю"3
1
Рассмотрим рациональное использование электроэнергии при обработке металлов резанием.
Технологические и энергетические процессы работы станков взаимосвязаны. Ускорение процессов увеличивает загрузку станков и создается лучший энергетический режим работы оборудования.
В процессе совершенствования технологии на машиностроительном предприятии одним из путей рационального использования электроэнергии является сокращение машинного (tM) и вспомогательного (t ) времени при обработке металла на станке.
Машинным временем считают, например, время снятия стружки режущим инструментом, вспомогательным - время работы станка на холостом ходу. Сокращение машинного и вспомогательного времени может достигаться за счет изменения оснастки, путем передачи изделия на другой станок, совмещением операций на станке, одновременной обработкой нескольких изделий, повышением качества инструмента. Кроме этого, к сокращению вспомогательного времени ведет автоматизация вспомогательных операций (перевод крепления деталей с ручного на пневматический привод), внедрение рациональных методов обработки.
Расчет экономии электроэнергии ведут при внедрении нового способа обработки детали на прежнем станке либо при передаче обработки на другой станок.
При изменении способа обработки детали на прежнем станке экономия электроэнергии (AW) достигается за счет уменьшения машинного времени обработки при постоянной мощности потерь (Рп) и определяется по выражению:
- Примеры выполнения заданий
- Примеры выполнения заданий
- Тема 1. Общая характеристика, задачи и значение
- Тема 2. Важнейшие понятия и термины курса
- 2.1 Технический процесс и техническая система. Закономерности
- 2.2 Производственный и технологический процессы
- Тема 3. Технический прогресс, его сущность и роль
- Тема 4. Сырье, материалы, топливо, энергия.
- 4.1 Сырье и материалы
- 4.2 Вода и энергия
- Тема 5. Химико-технологические процессы
- Тема 6. Высокотемпературные процессы в
- Тема 8. Электрохимические процессы
- Тема 9. Каталитические процессы
- Тема 10. Процессы, идущие под давлением
- Тема 11. Биохимические, фотохимические,
- Тема 12. Физические процессы систем технологий
- Тема 13. Электрофизические методы обработки
- Тема 14. Основы технологии машиностроения.
- Тема 15. Производство заготовок методами литья,
- Тема 16. Методы пластической деформации
- Тема 17. Неразъемные соединения
- Тема 18. Технологические процессы сборки
- Рациональное использование энергии в
- Основные направления рационального использования
- 1.2 Примеры выполнения заданий
- 2. Материальный и энергетический балансы
- 2.1 Технологический баланс, его структура
- 2.3 Контрольные задания к практическим занятиям
- 3. Определение выхода, возможного
- Определение вторичных энергетических ресурсов, их
- 3.2 Примеры выполнения заданий
- 3.3 Контрольные задания к практическим занятиям
- 4. Технологические процессы переработки топлив
- Характеристика и классификация процессов переработки
- 4.2 Примеры выполнения заданий
- 4.3 Контрольные задания к практическим занятиям
- 5. Технологические процессы производства
- Классификация химических волокон и характеристика
- 5.2 Примеры выполнения заданий
- 5.3 Контрольные задания к. Практическим занятиям
- 6. Металлы, сплавы
- 6.1 Свойства, методы обработки, испытание металлов, сплавов
- 6.2 Примеры выполнения заданий
- 6.3 Контрольные вопросы к практическим занятиям
- 7. Электрохимические процессы
- Характеристика и закономерности электрохимических
- 7.2 Примеры выполнения заданий
- 7.3 Контрольные задания к практическим занятиям
- 1. Значение, структура и порядок составления технологической
- 2. Консультации и контроль выполнения технологической части
- 3. Рекомендации к технологической части дипломных проектов и
- 4. Технологические мероприятия, направленные на рациональное
- 5. Рекомендации к технологической части дипломных проектов и
- 5.1 Структура технологической части дипломных проектов и работ
- 5.2 Общая характеристика производственного процесса
- Выбор и обоснование технологического процесса механической
- 5.4 Обоснование заготовок для получения деталей
- 5.5 Определение припусков на механическую обработку
- Выбор и характеристика оборудования, станочного
- Техническое нормирование операций технологического
- 5.8 Уточнение потребности количества единиц оборудования
- 5.9 Оценка эффективности технологических мероприятий
- 6. Рекомендации к технологической части дипломных проектов,
- 7. Краткая характеристика технологических мероприятий,
- 8. Рекомендации по составлению графической части дипломных