5.3.3 Проверка общей устойчивости балки
При изгибе высоких балок с узкими поясами может произойти боковое выпучивание сжатого пояса (рис.37). При этом балка изгибается не только в плоскости действия внешних сил, но и в плоскости min жесткости, вследствие чего происходит скручивание балки.
Рис.37. Расчетная схема потери устойчивости сжатого пояса
двутавровой балки при изгибе
Выпучивание происходит на участке между закреплениями верхнего пояса. Расстояния между закреплениями называются расчетной длиной балки .
Расчет на общую устойчивость балок двутаврого сечения выполняют с учетом коэффициента уменьшения допускаемого напряжения на сжатие , который зависит от гибкости балки и материала из которого она изготовлена
, (5.26)
. (5.27)
где – коэффициент зависящий от характера нагружения, его величину необходимо принимать согласно СНиП II-23-81 «Стальные конструкции».
Например, для незакрепленного в пролете пояса и сосредоточенной силы
, (5.28)
(5.29)
где - полярный момент инерции сечения.
Общую устойчивость не требуется проверять при отношении не превышающих критических значений (см. СНиП).
- К.А. Вансович
- Часть 2
- Введение
- Устойчивость магистральных трубопроводов
- 1.1. Потеря устойчивости прямого стержня под действием осевой сжимающей силы
- 1.2. Поперечные перемещения подземного участка магистрального трубопровода
- 1.3. Сопротивление грунта поперечным перемещениям трубы
- 1.4. Энергетический метод определения критической силы
- 1.5. Упрощенные зависимости для практических расчетов
- 1.5.1. Расчет на устойчивость прямолинейного участка трубопровода
- 1.5.2. Расчет на устойчивость изогнутого вверх участка трубопровода
- 2. Проектирование опор и эстакад магистральных и технологических трубопроводов
- 3. Железобетонные конструкции
- 3.1. Бетон
- 3.1.1. Прочность бетона
- Кубический образец; b) кубический образец без трения;
- 3.1.2. Деформация бетона под нагрузкой
- 3.1.3. Классы и марки бетона.
- 3.2. Арматура
- 1) Бетонная балка; 2) стальная арматура; 3) трещины в растянутом бетоне
- 3.3. Арматурные изделия, закладные детали и стыки
- 3.4. Свойства железобетона
- 3.5. Методы расчета на прочность железобетонных конструкций
- 3.5.1. Сжатие прямого железобетонного элемента
- 3.5.2. Напряжения и деформации в железобетоне при растяжении
- 3.5.3. Напряжения и деформации в железобетонном элементе при изгибе
- 4. Конструирование и расчет отдельно стоящих опор.
- 4.1 Конструктивная схема шпальных отдельно стоящих опор.
- 4.2 Железобетонные опоры
- 4.3 Конструирование стальных опор
- 5. Расчет на прочность изгибаемых элементов отдельно стоящих опор
- 5.1 Нагрузки и воздействия на отдельно стоящие опоры
- 5.2 Расчет железобетонных траверс
- 5.2.1. Железобетонные траверсы с одиночной арматурой
- 5.2.2. Железобетонные траверсы с двойной арматурой
- 5.3 Расчет стальных балочных конструкций опор и эстакад.
- 5.3.1 Проверка двутавровой балки на прочность.
- 5.3.2 Сварные двутавровые балки
- 5.3.3 Проверка общей устойчивости балки
- 5.3.4 Проверка жесткости балок
- 5.3.5 Расчет поясных швов
- 5.3.6 Расчет сварных стыков двутавровых балок
- 6. Расчет элементов строительных конструкций на сжатие
- 6.1. Расчет центрально сжатых колонн
- 6.2. Расчет внецентренно сжатых колонн
- 6.3. Расчет базы колонны
- 7. Расчет отдельно стоящего фундамента под колонну
- 7.1. Определение размеров подошвы фундамента
- 46. Расчетная схема отдельного фундамента
- Расчет отдельно стоящего центрально-сжатого фундамента на изгиб
- 7.3. Расчет отдельно стоящего фундамента на продавливание
- 7.4. Расчет внецентренно сжатого фундамента
- 8. Расчет продольных деформаций надземного участка трубопровода
- 9. Сферические резервуары
- 9.1. Определение напряжений в осесимметричных оболочках по безмоментной теории
- 9.2. Определение толщины стенки оболочки сферического резервуара
- 9.3. Кратковременные нагрузки на сферический резервуар
- 9.4. Деформации сферической оболочки
- 9.5. Расчет оболочки на устойчивость
- 9.6. Расчет стоек резервуара
- – Стойка; 2) – оболочка; 3) – связи между опорами
- Содержание