5.1 Нагрузки и воздействия на отдельно стоящие опоры
При расчете отдельно стоящих опор и эстакад необходимо учитывать нагрузки, возникающие при их возведении, эксплуатации и испытании трубопроводов.
Отдельно стоящие опоры и эстакады должны рассчитываться на нагрузки от веса трубопроводов с изоляцией, веса транспортируемого продукта, на горизонтальные нагрузки и воздействия от трубопроводов, нагрузки от веса людей и ремонтных материалов на обслуживающих площадках и переходных мостиках, а также снеговые и ветровые нагрузки, при наиболее неблагоприятном их сочетании.
Все нагрузки, действующие на трубопровод, должны быть приведены к его оси и разложены на составляющие: вертикальную, горизонтальную вдоль трубопровода и горизонтальную поперек трубопровода. Величина распределенной вдоль трубы нагрузки характеризуется её интенсивностью
…, (5.1)
где – погонный вес трубы; – вес изоляции;
– вес продукта; – снеговая нагрузка.
В том случае, если трубопровод проложен по многопролетной схеме (рис. 30), вертикальная нагрузка на одну опору определяется в зависимости от длины пролетов между опорами
, (5.2)
где – интенсивность суммарной вертикальной нагрузки на трубопровод;
– длина пролета между отдельно стоящими опорами.
Рис. 30. Расчетная схема для определения вертикальной нагрузки на опору
Нормативная вертикальная нагрузка от трубопроводов на траверсы опор и эстакад должна приниматься по сумме вертикальных нормативных нагрузок от всех трубопроводов (рис. 31).
Рис. 31. Определение нагрузок на траверсу от нескольких
технологических трубопроводов
Промежуточные опоры испытывают горизонтальную нагрузку от трубопроводов, которая возникает из-за сил трения в опорном устройстве
, (5.3)
где – коэффициент трения, который принимается равным 0,3 для опор скольжения сталь по стали, и принимается равным 0,1 для катковых опор (рис. 27).
На рисунке 32 показана расчетная схема траверсы, несущей три технологических трубопровода и опирающейся на две колонны. На этой схеме не учтена нагрузка от собственного веса траверсы.
Рис. 32. Расчетная схема траверсы
Чтобы рассчитать траверсу на прочность, её представляют в виде статически определимой балки, изгибаемой в двух плоскостях. Опоры балки находятся в местах установки колонн. Из уравнений статики определяют реакции опор и в вертикальной и горизонтальной плоскостях соответственно. После этого строят эпюры поперечных сил , и изгибающих моментов , .
- К.А. Вансович
- Часть 2
- Введение
- Устойчивость магистральных трубопроводов
- 1.1. Потеря устойчивости прямого стержня под действием осевой сжимающей силы
- 1.2. Поперечные перемещения подземного участка магистрального трубопровода
- 1.3. Сопротивление грунта поперечным перемещениям трубы
- 1.4. Энергетический метод определения критической силы
- 1.5. Упрощенные зависимости для практических расчетов
- 1.5.1. Расчет на устойчивость прямолинейного участка трубопровода
- 1.5.2. Расчет на устойчивость изогнутого вверх участка трубопровода
- 2. Проектирование опор и эстакад магистральных и технологических трубопроводов
- 3. Железобетонные конструкции
- 3.1. Бетон
- 3.1.1. Прочность бетона
- Кубический образец; b) кубический образец без трения;
- 3.1.2. Деформация бетона под нагрузкой
- 3.1.3. Классы и марки бетона.
- 3.2. Арматура
- 1) Бетонная балка; 2) стальная арматура; 3) трещины в растянутом бетоне
- 3.3. Арматурные изделия, закладные детали и стыки
- 3.4. Свойства железобетона
- 3.5. Методы расчета на прочность железобетонных конструкций
- 3.5.1. Сжатие прямого железобетонного элемента
- 3.5.2. Напряжения и деформации в железобетоне при растяжении
- 3.5.3. Напряжения и деформации в железобетонном элементе при изгибе
- 4. Конструирование и расчет отдельно стоящих опор.
- 4.1 Конструктивная схема шпальных отдельно стоящих опор.
- 4.2 Железобетонные опоры
- 4.3 Конструирование стальных опор
- 5. Расчет на прочность изгибаемых элементов отдельно стоящих опор
- 5.1 Нагрузки и воздействия на отдельно стоящие опоры
- 5.2 Расчет железобетонных траверс
- 5.2.1. Железобетонные траверсы с одиночной арматурой
- 5.2.2. Железобетонные траверсы с двойной арматурой
- 5.3 Расчет стальных балочных конструкций опор и эстакад.
- 5.3.1 Проверка двутавровой балки на прочность.
- 5.3.2 Сварные двутавровые балки
- 5.3.3 Проверка общей устойчивости балки
- 5.3.4 Проверка жесткости балок
- 5.3.5 Расчет поясных швов
- 5.3.6 Расчет сварных стыков двутавровых балок
- 6. Расчет элементов строительных конструкций на сжатие
- 6.1. Расчет центрально сжатых колонн
- 6.2. Расчет внецентренно сжатых колонн
- 6.3. Расчет базы колонны
- 7. Расчет отдельно стоящего фундамента под колонну
- 7.1. Определение размеров подошвы фундамента
- 46. Расчетная схема отдельного фундамента
- Расчет отдельно стоящего центрально-сжатого фундамента на изгиб
- 7.3. Расчет отдельно стоящего фундамента на продавливание
- 7.4. Расчет внецентренно сжатого фундамента
- 8. Расчет продольных деформаций надземного участка трубопровода
- 9. Сферические резервуары
- 9.1. Определение напряжений в осесимметричных оболочках по безмоментной теории
- 9.2. Определение толщины стенки оболочки сферического резервуара
- 9.3. Кратковременные нагрузки на сферический резервуар
- 9.4. Деформации сферической оболочки
- 9.5. Расчет оболочки на устойчивость
- 9.6. Расчет стоек резервуара
- – Стойка; 2) – оболочка; 3) – связи между опорами
- Содержание