5.3.1 Проверка двутавровой балки на прочность.
Проверку на прочность проводят в тех точках стальных балок, где возникают наибольшие нормальные или касательные напряжения. Кроме того, рассматриваются те опасные места в конструкции балки, где одновременно действуют как нормальные, так и касательные напряжения, так как именно в этих точках может выполняться условие перехода материала в пластическое состояние. Как правило, в поперечных сечениях, где возникают максимальный изгибающий момент или максимальная поперечная (перерезывающая) сила приложены сосредоточенные силы от нагрузок (например: от веса лежащей на балке трубы), в том числе опорные реакции.
В поперечных сечениях балки, где изгибающий момент , проверку на прочность выполняют по нормальным напряжениям
, (5.13)
где – момент сопротивления сечения нетто;
– расчетное сопротивление стали;
– коэффициент условий работы.
В тех случаях, когда в сечении с максимальным изгибающим моментом действуют еще и значительные поперечные силы, применяют следующую формулу (СНиП II-23-81)
(5.14)
где – коэффициент, учитывающий возможность развитие пластических деформаций.
Коэффициент вычисляют следующим образом.
Сначала вычисляют средние касательные напряжения в сечении
(5.15)
где – толщина стенки двутавра;
– высота сечения двутавра.
Коэффициент принимается равным по таблице 5.1, если касательные напряжения , где – расчетное сопротивление стали сдвигу.
, (5.16)
где – коэффициент надежности по материалу.
Таблица 5.1
|
|
0,25 | 1,19 |
0,5 | 1,12 |
1,0 | 1,07 |
2,0 | 1,04 |
– площадь полки двутавра;
– площадь стенки двутавра.
Для диапазона коэффициент находят в зависимости от значения средних касательных напряжений в сечении
(5.17)
где – для двутавров, изгибаемых в плоскости наибольшей жесткости;
– для других сечений.
В сечения, где возникает максимальная поперечная сила , проверка на прочность проводится по касательным напряжениям (рис. 35).
Рис.35. Расчетная схема изгиба стальной двутавровой балки
Для балки произвольного сечения касательные напряжения определяются по формуле Журавского
, (5.18)
где – статический момент отсеченной части сечения;
– момент инерции сечения;
– ширина сечения в точке с координатой .
Для двутавра максимальные касательные напряжения возникнут на линии горизонтальной оси симметрии, где
. (5.19)
Для тех сечений изгибаемых балок, где приложены сосредоточенные нагрузки, а также в опорных сечениях балок необходимо выполнить расчет на срез стенки двутавра
(5.20)
где – высота стенки двутавровой балки.
Для расчета на прочность балки в местах приложения нагрузки к верхнему поясу, а также в опорных сечениях балок, не укрепленных ребрами жесткости, следует выполнить проверку на прочность с учетом местных напряжений.
Величина местных напряжений зависит от нагрузки , передающуюся от трубы через опорное устройство, и размеров той площадки стенки двутавра, на которую передается деформация сжатия через изгибаемый пояс двутавра (рис. 36)
Рис.36. Расчетная схема двутавровой балки на изгиб в месте приложения нагрузки
Условие прочности при проверке только по местным напряжениям
(5.21)
где – расчетное значение нагрузки (сосредоточенной силы);
– условная длина распределения локальной нагрузки
. (5.22)
- К.А. Вансович
- Часть 2
- Введение
- Устойчивость магистральных трубопроводов
- 1.1. Потеря устойчивости прямого стержня под действием осевой сжимающей силы
- 1.2. Поперечные перемещения подземного участка магистрального трубопровода
- 1.3. Сопротивление грунта поперечным перемещениям трубы
- 1.4. Энергетический метод определения критической силы
- 1.5. Упрощенные зависимости для практических расчетов
- 1.5.1. Расчет на устойчивость прямолинейного участка трубопровода
- 1.5.2. Расчет на устойчивость изогнутого вверх участка трубопровода
- 2. Проектирование опор и эстакад магистральных и технологических трубопроводов
- 3. Железобетонные конструкции
- 3.1. Бетон
- 3.1.1. Прочность бетона
- Кубический образец; b) кубический образец без трения;
- 3.1.2. Деформация бетона под нагрузкой
- 3.1.3. Классы и марки бетона.
- 3.2. Арматура
- 1) Бетонная балка; 2) стальная арматура; 3) трещины в растянутом бетоне
- 3.3. Арматурные изделия, закладные детали и стыки
- 3.4. Свойства железобетона
- 3.5. Методы расчета на прочность железобетонных конструкций
- 3.5.1. Сжатие прямого железобетонного элемента
- 3.5.2. Напряжения и деформации в железобетоне при растяжении
- 3.5.3. Напряжения и деформации в железобетонном элементе при изгибе
- 4. Конструирование и расчет отдельно стоящих опор.
- 4.1 Конструктивная схема шпальных отдельно стоящих опор.
- 4.2 Железобетонные опоры
- 4.3 Конструирование стальных опор
- 5. Расчет на прочность изгибаемых элементов отдельно стоящих опор
- 5.1 Нагрузки и воздействия на отдельно стоящие опоры
- 5.2 Расчет железобетонных траверс
- 5.2.1. Железобетонные траверсы с одиночной арматурой
- 5.2.2. Железобетонные траверсы с двойной арматурой
- 5.3 Расчет стальных балочных конструкций опор и эстакад.
- 5.3.1 Проверка двутавровой балки на прочность.
- 5.3.2 Сварные двутавровые балки
- 5.3.3 Проверка общей устойчивости балки
- 5.3.4 Проверка жесткости балок
- 5.3.5 Расчет поясных швов
- 5.3.6 Расчет сварных стыков двутавровых балок
- 6. Расчет элементов строительных конструкций на сжатие
- 6.1. Расчет центрально сжатых колонн
- 6.2. Расчет внецентренно сжатых колонн
- 6.3. Расчет базы колонны
- 7. Расчет отдельно стоящего фундамента под колонну
- 7.1. Определение размеров подошвы фундамента
- 46. Расчетная схема отдельного фундамента
- Расчет отдельно стоящего центрально-сжатого фундамента на изгиб
- 7.3. Расчет отдельно стоящего фундамента на продавливание
- 7.4. Расчет внецентренно сжатого фундамента
- 8. Расчет продольных деформаций надземного участка трубопровода
- 9. Сферические резервуары
- 9.1. Определение напряжений в осесимметричных оболочках по безмоментной теории
- 9.2. Определение толщины стенки оболочки сферического резервуара
- 9.3. Кратковременные нагрузки на сферический резервуар
- 9.4. Деформации сферической оболочки
- 9.5. Расчет оболочки на устойчивость
- 9.6. Расчет стоек резервуара
- – Стойка; 2) – оболочка; 3) – связи между опорами
- Содержание