9. Сферические резервуары
Сферические резервуары (рис. 52) предназначены для хранения сжиженных газов под высоким избыточным внутренним давлением от 0,25 до 2,0 МПа. Объем их колеблется от 600 до 4000 м3.
Рис. 52. Сферические резервуары для хранения сжиженных газов
Проектирование сферических резервуаров (рис. 53) выполняется с учетом требований СНиП 2.09.03 – 85 «Сооружение промышленных предприятий» и СНиП П-23-81 «Стальные конструкции». Выбор материалов зависит от температуры окружающей среды и температуры продукта.
Рис. 53. 3-D модель группы из четырех сферических резервуаров на фундаменте
Основным элементом конструкции сферического резервуара является оболочка, которую собирают из лепестков двоякой кривизны, а также купола и днища. Сферические резервуары более сложны в изготовлении, чем цилиндрические, при этом трудоемкость их изготовления определяется, прежде всего, принятой схемой раскроя сферы, которая чаще всего принимается экваториально-меридиональной или меридиональной (рис. 54).
Рис. 54. Схемы раскроя сферического резервуара:
а) меридиональный; б) экваториально-меридиональный
1 – купол; 2 – лепестки; 3 - днище
Элементы оболочки (лепестки) толщиной до 36 мм вальцуют в холодном состоянии на шаровых вальцах, при большей толщине штампуют в горячем состоянии на прессах. Сначала лепестки соединяются на прихватках и образуют сферу. Затем их сваривают автоматами с помощью специальных манипуляторов-вращателей (рис. 55), которые позволяют выполнять сварные швы в нижнем положении. Для крупных резервуаров (объемом 2 тыс. м3 и более) допускается монтаж сферических резервуаров без применения манипуляторов (рис. 56).
Рис. 55. Использование манипулятора-вращателя для сварки сферического резервуара
Рис. 56. Монтаж сферического резервуара
Сферические резервуары чаще всего опираются на систему стоек 5 (рис. 57), выполняемых из труб или двутавров и привариваемых к лепесткам оболочки. Такая конструкция опор обеспечивает достаточную свободу температурных деформаций оболочки. Число лепестков в экваториальном сечении должно быть кратным числу опорных стоек, а их ширина зависит от размеров стандартных листов.
Рис. 57. Схема сферического резервуара
1 — сферическая оболочка резервуара; 2 — купол; 3 — лепестки оболочки; 4 — днище оболочки; 5 — стойки опоры; 6 — связи между опорами; 7 — горизонтальная площадка; 8 — шахтная лестница; 9 — внутренняя смотровая лестница; 10 — столбчатые фундаменты шахтной лестницы; 11 – кольцевой железобетонный фундамент
Для создания пространственной жесткости сооружения все колонны должны соединяться между собой крестовыми связями 6. Сферические резервуары для их обслуживания в процессе эксплуатации оборудуют площадками 7 с перилами и лестницами. Лестницы выполняют шахтного типа 8 или подвижными вокруг резервуара. Для осмотра оболочек внутри резервуара служат подвижные лестницы 9, доступ к которым возможен сверху и снизу резервуаров.
- К.А. Вансович
- Часть 2
- Введение
- Устойчивость магистральных трубопроводов
- 1.1. Потеря устойчивости прямого стержня под действием осевой сжимающей силы
- 1.2. Поперечные перемещения подземного участка магистрального трубопровода
- 1.3. Сопротивление грунта поперечным перемещениям трубы
- 1.4. Энергетический метод определения критической силы
- 1.5. Упрощенные зависимости для практических расчетов
- 1.5.1. Расчет на устойчивость прямолинейного участка трубопровода
- 1.5.2. Расчет на устойчивость изогнутого вверх участка трубопровода
- 2. Проектирование опор и эстакад магистральных и технологических трубопроводов
- 3. Железобетонные конструкции
- 3.1. Бетон
- 3.1.1. Прочность бетона
- Кубический образец; b) кубический образец без трения;
- 3.1.2. Деформация бетона под нагрузкой
- 3.1.3. Классы и марки бетона.
- 3.2. Арматура
- 1) Бетонная балка; 2) стальная арматура; 3) трещины в растянутом бетоне
- 3.3. Арматурные изделия, закладные детали и стыки
- 3.4. Свойства железобетона
- 3.5. Методы расчета на прочность железобетонных конструкций
- 3.5.1. Сжатие прямого железобетонного элемента
- 3.5.2. Напряжения и деформации в железобетоне при растяжении
- 3.5.3. Напряжения и деформации в железобетонном элементе при изгибе
- 4. Конструирование и расчет отдельно стоящих опор.
- 4.1 Конструктивная схема шпальных отдельно стоящих опор.
- 4.2 Железобетонные опоры
- 4.3 Конструирование стальных опор
- 5. Расчет на прочность изгибаемых элементов отдельно стоящих опор
- 5.1 Нагрузки и воздействия на отдельно стоящие опоры
- 5.2 Расчет железобетонных траверс
- 5.2.1. Железобетонные траверсы с одиночной арматурой
- 5.2.2. Железобетонные траверсы с двойной арматурой
- 5.3 Расчет стальных балочных конструкций опор и эстакад.
- 5.3.1 Проверка двутавровой балки на прочность.
- 5.3.2 Сварные двутавровые балки
- 5.3.3 Проверка общей устойчивости балки
- 5.3.4 Проверка жесткости балок
- 5.3.5 Расчет поясных швов
- 5.3.6 Расчет сварных стыков двутавровых балок
- 6. Расчет элементов строительных конструкций на сжатие
- 6.1. Расчет центрально сжатых колонн
- 6.2. Расчет внецентренно сжатых колонн
- 6.3. Расчет базы колонны
- 7. Расчет отдельно стоящего фундамента под колонну
- 7.1. Определение размеров подошвы фундамента
- 46. Расчетная схема отдельного фундамента
- Расчет отдельно стоящего центрально-сжатого фундамента на изгиб
- 7.3. Расчет отдельно стоящего фундамента на продавливание
- 7.4. Расчет внецентренно сжатого фундамента
- 8. Расчет продольных деформаций надземного участка трубопровода
- 9. Сферические резервуары
- 9.1. Определение напряжений в осесимметричных оболочках по безмоментной теории
- 9.2. Определение толщины стенки оболочки сферического резервуара
- 9.3. Кратковременные нагрузки на сферический резервуар
- 9.4. Деформации сферической оболочки
- 9.5. Расчет оболочки на устойчивость
- 9.6. Расчет стоек резервуара
- – Стойка; 2) – оболочка; 3) – связи между опорами
- Содержание