9.5. Система инфракрасного обогрева производственных помещений
Инфракрасные системы обогрева (ИКО) имеют ряд преимуществ по сравнению с традиционными системами [21]:
высокая надежность теплоснабжения: отсутствие водяного цикла исключает размораживание;
высокая скорость нагрева: прогрев рабочих мест осуществляется в течение нескольких минут после включения, что дает возможность снижения температуры, а значит и расхода газа в ночное время, в выходные и праздничные дни;
меньшая температура воздуха в помещении: комфортные условия работы наблюдаются при температурах внутреннего воздуха меньших на 5-10 С, чем при использовании конвективных систем;
локальный обогрев: излучатели могут осуществлять зонный обогрев отдельных рабочих.
В соответствии с имеющимся опытом желаемая температура в помещении может быть выражена как
,
где tв – температура воздуха в помещении, С; tл – лучистая температура, получаемая поверхностями за счет излучения от рабочих поверхностей инфракрасных излучателей.
Воздух в помещении не нагревается за счет инфракрасного излучения и может быть ниже желаемой температуры. Следовательно, возможно снижение температуры воздуха tв при одновременном увеличении лучистой температуры tл.
Выражение для желаемой температуры также может быть записано как
,
где I – плотность лучистого потока, Вт/м2. Плотность потока излучения на постоянных рабочих местах ограничена величиной 150 Вт/м2. При максимально допустимом лучистом потоке температура воздуха в рабочей зоне может быть снижена до .
Особенно эффективны системы ИКО в промышленных зданиях с высокими пролетами, в которых при обычных конвективных системах теплый воздух поднимается под потолок, оставляя нижнюю часть помещения, где как раз работают люди, относительно холодной. Разница в температурах между воздухом у пола и потолка может достигать 20 С.
Оценим возможную экономию тепла при использовании системы ИКО. При стандартном конвективном способе отопления производственных помещений с высокими пролетами перепад температуры воздуха по высоте может достигать t = 10-15 С. При известном коэффициенте тепловых потерь здания k плотность теплового потока потерь при конвективном отоплении приближенно выражается как
, (213)
где - средняя температура воздуха в помещении,С; tн – температура наружного воздуха, С.
При лучистом отоплении перепад температуры воздуха по высоте здания отсутствует или может быть даже отрицательным (вверху температура воздуха ниже, чем у пола). В этом случае потери тепла при использовании системы ИКО и сохранении той же самой желаемой температуры на рабочем месте выражается как
. (214)
Тогда перевод отопления с конвективного на ИКО при средней температуре наружного воздуха за отопительный сезон tн = -6,6 С дает снижение теплопотерь здания в 2 и более раз:
Дальнейшее снижение потребления теплоты возможно за счет уменьшения температуры на рабочих местах в ночное время, выходные дни, а также путем применения локального обогрева. Все эти режимы легко реализуются с помощью ИКО.
По способам сжигания природного газа и температуре рабочих поверхностей можно выделить 3 группы ИК- излучателей:
а) светлые ИК- излучатели – температура рабочих поверхностей 800-1000 С;
б) «темные» ИК- излучатели – 00-650 С;
в) «черные» ИК- излучатели – 200-300 С.
Светлые системы ИКО. Все светлые ИК- излучатели основаны на принципе поверхностного горения (рис. 82).
Основным элементом излучателя является панель из пористой перфорированной керамики (рис. 83). На внутреннюю сторону панели подается смесь газа и воздуха, которая затем проходит через отверстия малого диаметра в керамической панели, при этом смесь нагревается и воспламеняется вблизи поверхности. Образующееся в выходных частях отверстий пламя нагревает излучающую керамическую поверхность до температуры 800-1000 С.
Рис. 83. Схема работы светлого ИК- излучателя: 1 – газовоздушая смесь; 2 – пористая перфорированная панель; 3 – излучающая поверхность; 4 – стабилизирующий экран
Из-за высокой температуры поверхности эти излучатели должны монтироваться на достаточном расстоянии от рабочих мест и пола. Лучистый КПД в лучших моделях может достигать 60 %. Кроме того, продукты сгорания выбрасываются в атмосферу цеха, отдавая теплоту зданию. Поэтому суммарный КПД таких систем близок к 100 %. Для поступления воздуха на горение и удаления продуктов сгорания необходимо обеспечить приточно-вытяжную вентиляцию объемом 23,3 м3/ч на 1 кВт установленной мощности ИК-излучателей. Как правило, имеющейся естественной вентиляции достаточно для этих целей.
Кроме указанных выше преимуществ, светлые излучатели компактны, легко устанавливаются на колоннах и фермах, не занимая полезное пространство цехов, не требуют специальных вытяжных и воздухоподводящих труб, вентиляторов, потребляют минимум электроэнергии. Таким образом, светлые ИК- излучатели идеальны для обогрева цехов с высокими пролетами. Ограничения по применению могут быть связаны с чрезмерной запыленностью и пожароопасностью производства.
«Темные» ИК- излучатели. «Темные» ИК- излучатели имеют температуру рабочей поверхности 400-650 С. Типичная конструкция представлена на рис. 84.
Система содержит горелку, соединенную трубой диаметром 80-100 мм с вытяжным вентилятором. Поток продуктов сгорания поступает в трубу, доводя температуру ее наружной поверхности до 400-650С. Отражатель, расположенный над излучающей трубой, направляет поток тепла в отапливаемую зону.
Если в системе ИКО со светлыми излучателями продукты сгорания выбрасываются в атмосферу цеха, дополнительно отдавая теплоту, то в системах с «темными» излучателями продукты сгорания, как правило, должны выводиться наружу из-за повышенного содержания оксидов азота. При этом суммарный КПД «темных» систем не превосходит 70 %.
«Черные» ИК- излучатели. «Черные» ИК- излучатели имеют температуру рабочих поверхностей 200-300 С. Они представляют собой воздуховоды диаметром 300-400 мм, устанавливаемые над рабочими местами в цехах.
Внутри воздуховодов рециркулирует горячий воздух с температурой 200-400 С, нагревая стенки воздуховода. Сверху воздуховодов устанавливается тепловая изоляция и рефлектор. Воздух для горения подается дополнительным вентилятором. Нагрев рециркуляционного воздуха осуществляется за счет смешения продуктов сгорания с нагреваемой средой. Часть рециркулирующего воздуха выбрасывается за пределы помещения. Поскольку температура воздуха на выходе из системы, как правило, не превышает 200 С, то суммарный КПД системы близок к 85 %.
- В.А. Мунц Энергосбережение в энергетике и теплотехнологиях
- Глава 1. Вторичные энергоресурсы 15
- Энергоаудит
- Глава 1. Вторичные энергоресурсы
- 1.1. Газообразные горючие вэр
- 4 Кольцевой коллектор; 5 – смеситель;
- 8 Камера догорания; 9 трубчатый теплообменник; 10 горелка
- 1.2. Огневое обезвреживание шламов металлургических производств
- 1 Топка; 2 – барабанная печь; 3 – горелки для сжигания поверхностного масла;
- Глава 2. Утилизация высокотемпературных тепловых отходов
- 2.1. Газотрубные котлы-утилизаторы
- 1 Входная газовая камера; 2 испарительный барабан; 3 барабан сепаратора;
- 4 Сепарационное устройство; 5 трубы основного испарителя; 6 выходная камера;
- 7 Предвключенная испарительная поверхность
- 1 Газотрубная поверхность нагрева; 2 нижний барабан; 3 входная газовая камера;
- 4 Поворотная камера; 5 выходная газовая камера; 6 верхний барабан;
- 7 Пароперегреватель; 8 змеевики для разогрева при пуске
- 2.2. Водотрубные котлы-утилизаторы
- 4 Шламоотделитель; 5 – испаритель II ступени; 6 - балки; 7 - барабан; 8 – обдувочные линии; 9 - испаритель III ступени; 10 – экономайзер
- 2.3. Котлы-утилизаторы за обжиговыми печами серного колчедана
- 1 Печь с кипящим слоем; 2 испаритель, размещенный в кипящем слое;
- 3 Котел-утилизатор
- 1 Барабан; 2 вход газов; 3 труба в трубе;
- 4 Разделительная перегородка; 5 выход газов
- 1 К пароперегревателю, расположенному в кипящем слое;
- 2 От пароперегревателя; 3 испарительный блок; 4 ударная очистка
- 2.4. Установки сухого тушения кокса (устк)
- 2.5. Котлы-утилизаторы сталеплавильных конвертеров
- 1 Циркуляционные насосы; 2 – паровой аккумулятор; 3 — газоплотная юбка; 4 — горелки; 5 — подъемный газоход; 6 — барабан-сепаратор; 7 — конвективный испаритель;
- 12 Дымовая труба; 13, 14 — дымососы; 15смеситель; 16 — конвертер
- Глава 3. Энерготехнологические установки
- 3.1. Энерготехнологическое комбинирование в прокатном производстве
- 1 Проходная печь для нагрева металла; 2 нагреваемый металл; 3 газовые горелки;
- 4 Котел-утилизатор; 5 испарительные поверхности нагрева; 6 пароперегреватель;
- 7 Барабан; 8 водяной экономайзер; 9 воздухоподогреватель
- 3.2. Энерготехнологическое комбинирование в целлюлозно-бумажной промышленности
- 3.3. Энерготехнологическое комбинирование в доменном производстве
- Расчет тепловой схемы
- 3.4. Энерготехнологическое комбинирование при получении водорода
- 3.5. Охлаждение конструктивных элементов высокотемпературных установок
- 1 Теплообменная поверхность; 2 циркуляционный насос;
- Глава 4. Использование отработавшего пара
- 1 Производственная установка;
- 1 Производственный агрегат;
- 2 Пароочиститель; 3турбина мятого пара; 4турбина двойного давления;
- 5, 6 Тепловые аккумуляторы;
- Глава 5. Утилизация низкопотенциальных тепловых отходов
- 5.1. Утилизация теплоты загрязненных стоков
- 5.2. Утилизация теплоты агрессивных жидкостей
- 6 Теплообменники с промежуточным теплоносителем;
- 5.3. Утилизация теплоты вентиляционных выбросов
- 1 Приточный вентилятор; 2 вытяжной вентилятор; 3 пластинчатый теплообменник; 4 сборник конденсата; 5 фильтр наружного воздуха;
- 6 Фильтра удаляемого воздуха; 7 воздухонагреватель;
- 8 Воздухораспределитель
- Глава 6. Глубокое охлаждение продуктов сгорания
- 6.1. Влажный воздух, влажные продукты сгорания
- 6.2. Утилизация теплоты низкотемпературных дымовых газов
- 6.3. Расчет контактного экономайзера
- Глава 7. Парогазовые установки
- 7.1. Основные типы парогазовых установок
- 7.2. Количественные показатели термодинамических циклов пгу
- 7.3. Термическая эффективность парогазовых установок
- 7.4. Соотношения между параметрами газового и парового циклов
- 7.5. Парогазовые установки с впрыском пара
- 7.6. Модернизация котельных в тэц
- Глава 8. Энергосбережение в газовой промышленности
- 8.1. Опытно-промышленная газотурбинная расширительная станция (гтрс) на Среднеуральской грэс
- 8.2. Оптимальное использование теплоты уходящих газов газовых турбин
- 8.3. Теплоснабжение от утилизационных установок компрессорных станций
- Глава 9. Энергосбережение промышленности
- 9.1. Энергосбережение в котельных и тепловых сетях
- 1. Снижение потерь теплоты с уходящими газами
- 2. Потери теплоты с химической неполнотой сгорания
- 3. Потери теплоты в окружающую среду
- 4. Работа котельной установки в режиме пониженного давления
- 5. Температура питательной воды tв
- 6. Возврат конденсата в котельную
- 7. Использование тепловой энергии непрерывной продувки котлов
- 8. Режимы работы котельного оборудования
- 9. Перевод паровых котлов на водогрейный режим
- 10. Оптимизация работы насосного и тягодутьевого оборудования
- 9.2. Тепловые потери трубопроводов
- 9.3. Энергосбережение в компрессорном хозяйстве
- 9.4. Снижение теплопотерь за счет использования двухкамерного остекления
- 9.5. Система инфракрасного обогрева производственных помещений
- 8 Рабочие места в цехе
- Библиографический список
- 620002, Екатеринбург, ул. Мира,19
- 620002, Екатеринбург, ул. Мира,19