1. Поняття про електронну та мікроелектроніку
Виробництва компонентів електронного устаткування України призначені забезпечити всі виробничі сфери та побут людей високоефективними засобами комп'ютерної техніки, новими поколіннями супутникових систем зв'язку, комплексну автоматизацію всіх галузей народного господарства.
Найбільшими центрами виробництва електронної та мікроелектронної техніки є Київ, Харків, Львів, Дніпропетровськ, Сімферополь, Донецьк, Запоріжжя, Одеса.
У Києві почав діяти технопарк мікроелектроніки, а в Харкові технопарк монокристалів для виробництва електронних компонентів.
Виробництва компонентів електронного устаткування використовують напівпровідникові матеріали високої чистоти, що містять до 99,9999 % основного компонента, тобто в цих матеріалах на мільйон атомів основного компонента припадає один атом домішок.
Розрізняють прості й складні напівпровідникові матеріали. Прості – це кремній, германій, селен, телур, фосфор, сірка, арсен, стибій, йод та ін. Складні – це тверді розчини (кремнію і германію) та хімічні сполуки (арсенід галію, оксид міді та ін.). Електропровідність цих матеріалів при кімнатній температурі має проміжне значення між електропровідністю металів (10б – 104 Ом-1 см-1) і діелектриків (10-10 – 10-12 Ом-1 см-1).
Електронікою називають науку про електронні процеси у вакуумі, газах, рідинах і напівпровідниках, які відбуваються за різних температур під дією електричних і магнітних полів.
Технічна електроніка розроблює, виробляє та експлуатує електронні прилади та пристрої найрізноманітнішого призначення. Вона відзначається великою швидкодією та точністю.
Мікроелектронікою називають частину технічної електроніки, яка розроблює, виготовляє мікросхеми та конструкційно-допоміжні пристрої.
Основною продукцією мікроелектроніки є інтегральні мікросхеми.
Інтегральною мікросхемою (ІМС) називають електричну схему, яка складається з певної кількості елементів, виготовлених і електрично пов'язаних між собою у приповерхневому шарі напівпровідникового монокристалу або на діелектричній підкладці.
Монокристали вирощують із кремнію та арсеніду галію, а підкладки виготовляють із скла або кераміки.
Елементи ІМС поділяють на активні і пасивні.
Активні елементи ІМС підсилюють сигнали або перетворюють їх. Це діоди, транзистори тощо.
Пасивні елементи передають сигнали. До них належать резистори, конденсатори, котушки індуктивності тощо.
Деталі (компоненти) електронного устаткування використовуються для виробництва систем обробки та передачі інформації, автоматичних систем управління процесами виробництва і руху, устаткування для радіо, телебачення та зв'язку, комп'ютерів, ЕОМ, медичної апаратури, пристроїв квантової електроніки, обладнання для наукових досліджень, електронних годинників та багато чого іншого.
Найважливішими компонентами сучасного електронного устаткування є інтегральні мікросхеми (ІМС) та мікропроцесори.
Інтегральні мікропроцесори є найбільшим і найважливішим науково-технічним досягненням сучасності і мають значні перспективи свого розвитку.
Електроніка зародилася на початку XX ст. Слідом за створенням радіо та телебачення було створено перші ЕОМ (електронно-обчислювальні машини). Електронну апаратуру складали з окремих готових елементів-електронних ламп, резисторів, конденсаторів тощо, які з'єднували між собою за допомогою електричних провідників паянням і зварюванням. Виробництво електронної апаратури було трудомістким, а самі прилади громіздкими, ненадійними, крім того, споживали багато енергії. Так, маса ЕОМ 1940 р. виготовлення становила 30 т. Вона споживала таку кількість електричної енергії, як одночасно включені 180 прожекторів, а виконувала розрахунки які, виконує сучасний кишеньковий калькулятор. Починаючи з 40-х років XX ст. усі зусилля творців електронної апаратури були спрямовані на мініатюризацію електричних схем та зменшення розмірів і маси апаратури.
В грудні 1947 р. американські винахідники Джон Бардін і Уолтер Браттейн створили транзистор, який спричинив переворот у електроніці.
Електронне обладнання стало меншим за розмірами, легшим, надійнішим і дешевшим, ніж аналогічне за призначенням на електронних лампах. Проте з часом саме електронне обладнання та спосіб його виготовлення перестали задовольняти темпи розвитку науки і техніки.
Наступний крок електроніки пов'язаний із розвитком мікроелектроніки, який ґрунтується на використанні інтегральних мікросхем.
У 1959 р. Дж. Кілбі і Р. Нойс незалежно один від одного заявили про винаходи, які полягали у тому, що на одному кристалі кремнію побудована ціла електронна схема. Такі схеми стали називати інтегральними.
Перші мікросхеми були виготовлені на кристалах площею кілька квадратних міліметрів. Настав період удосконалення технології виготовлення ІМС: зменшення площі, яку займає мікросхема; поліпшення її якості та надійності, зменшення собівартості.
Із винаходом інтегральних мікросхем з'явилися електронні годинники, які зробили переворот у структурі годинникової промисловості.
Ручні годинники з продукції точного машинобудування перейшли до продукції електронної промисловості. Механічні арифмометри та логарифмічні лінійки замінили на кишенькові калькулятори.
Зростає значення мікроелектроніки в промисловості: у процесі зварювання, виконання монотонних робіт. Мікроелектроніка відіграє важливу роль також під час складання виробів, у системах контролю, обліку та розподілу продукції тощо.
Швидкий розвиток мікроелектроніки та її використання в найрізноманітніших галузях промисловості та людської діяльності обумовлений такими факторами:
• висока надійність в експлуатації, що забезпечує безвідмовність, довговічність, ремонтопридатність, захищеність від зовнішніх факторів впливу;
• можливість значного зменшення габаритів і маси різних виробів без втрати якості роботи.
Інтегральна електроніка на сьогоднішній день є галуззю промисловості, яка здатна дуже швидко впроваджувати у виробництво інноваційно-перспективні наукові розробки, які започатковуються схемотехнічною мікроелектронікою та іншими напрямами сучасної науки.
Формується новий комплекс наноелектронних технологій, здатних створювати надвеликі мікропроцесори – інтегральні структури з дуже великим ступенем інтеграції та функцій і надмалими габаритними розмірами та енергоспоживанням.
Мова йде про габарити, які будуть вимірюватись не мікрометрами, а нанометрами.
Нано (від грецьк. nonos – карлик) – приставка для створення назв дольних одиниць рівних одній міліардній частці вихідних одиниць. Наприклад, 1 нм = 10-9 м.
Наноелектронні технології, інтегруючись з біотехнологіями, мікро- та наномеханікою, роботобудуванням та іншими технологіями, в найближчі десятиліття будуть спроможні ще в більшій мірі поставити досягнення сучасної науки на облаштування людського життя та навколишнього середовища.
- Курс лекцій
- Технології виробництва машин та устаткування
- Тема 14 Ливарне виробництво
- 1. Загальні відомості про ливарне виробництво
- 2. Способи виготовлення відливок
- Виготовлення виливків у разових формах
- Виготовлення виливків у кокілях
- Виготовлення виливків під тиском
- Виготовлення виливків за виплавними моделями
- Виготовлення виливків відцентровим литтям
- 3. Контроль якості виливків
- Тема 15 Обробка металів тиском
- 1. Суть обробки металів тиском
- 2. Основні види обробки металів тиском
- 3. Технологічні процеси виготовлення заготівок
- Виготовлення заготівок пресуванням
- Волочіння
- Кування
- Технологічний процес штампування
- Тема 16 Процес зварювання
- 1. Характеристика зварювання та види зварних з'єднань
- 2. Термічні способи зварювання
- 3. Термомеханічні способи зварювання
- 4. Механічні способи зварювання
- 5. Паяння металів
- Тема 17 Технології обробки металів
- 1. Технологія процесу різання металів
- 2. Способи механічної обробки різанням
- 3. Хімічні та електричні способи обробки різанням
- 4. Термічна обробка металевих виробів
- 5. Технологічний процес складання машин
- Тема 18 Технології хімічних виробництв
- 1. Структура хімічної промисловості України
- 2. Хіміко-технологічні процеси (хтп)
- 3. Виробництво основних видів хімічної продукції
- Особливості технологій виробництва азотних добрив
- 4. Нафтопереробна промисловість
- Тема 19 Деревообробна промисловість
- 1. Лісопромисловий комплекс України
- 2. Лісозаготівля та лісопильне виробництво
- 3. Переробка деревини
- Тема 20 Технології будівельних матеріалів та виробів
- 1. Будівельні матеріали із кераміки
- 2. Виробництво скла та скловиробів
- 3. Виготовлення гіпсу, вапна, цементу
- 4. Виготовлення цегли, каменю, бетонних та залізобетонних виробів
- Тема 21 Технології галузей легкої промисловості
- 1. Структура легкої промисловості України
- 3. Швейна промисловість
- 4. Виробництво шкіри та виробів з неї
- Тема 22 Біотехнології
- 1. Схема біотехнологічного виробництва
- Основні сфери застосування біотехнології
- Тема 23 Технології перероблення сільськогосподарської продукції та харчової промисловості
- 1. Виробництво хлібобулочних виробів
- 2. Виробництво цукру
- 3. Виробництво м’яса, молока, м’ясо-молочних продуктів
- 4. Виробництво етилового спирту
- Тема 24 Транспорт і зв’язок
- 1. Види транспорту та транспортних перевезень
- 3. Основні види зв’язку
- Тема 25 Основи технологій виробництва компонентів електронного устаткування
- 1. Поняття про електронну та мікроелектроніку
- 2. Інтегральні мікросхеми (імс)
- 3. Напівпровідникові матеріали для виготовлення імс