8.1. Опытно-промышленная газотурбинная расширительная станция (гтрс) на Среднеуральской грэс
Транспортировка природного газа по магистральным газопроводам на большие расстояния осуществляется под давлением, достигающим после подкачивающих станций 7,0-7,5 МПа. По традиционной схеме для использования природного газа на тепловых электростанциях требуется значительно снизить его давление на участке от магистральных газовых сетей до горелок котла, для чего предусматриваются две ступени редуцирования газа: 1-я ступень – размещаемые на ответвлении от газовой магистрали газораспределительные станции (ГРС), где давление газа снижается до 1,2 МПа, 2-я ступень – расположенные на промплощадке ТЭС газорегуляторные пункты (ГРП), где давление газа снижается с 1,2 МПа до требуемого по условиям работы котлов уровня.
Технологической схемой ГТРС на Среднеуральской ГРЭС (рис. 68) предусматривается возможность параллельной работы газовой турбины [15] и традиционного газораспределительного пункта (ГРП). Полный расход газа на турбину составляет 210103 м3/ч, остальная часть газа подается к котлам через встроенный в здание ГТРС ГРП. Последний состоит из четырех ниток, каждая из которых рассчитана на редуцирование газа по одноступенчатой схеме, причем три нитки (Ду = 250 мм) рассчитаны на полный расход каждая, а одна (Ду = 150 мм) – на 30%-ную нагрузку (70103 м3/ч) и является растопочной.
Рис. 68. Технологическая схема ГТРС: 1 – расширительная турбина; 2 – подогреватели газа; 3 ГРП; 4 – циркуляционный насос; 5 – экономайзер
При параллельной работе турбины и ГРП одна из его основных ниток (заранее выбранная) работает в безрасходном «следящем» режиме. В случае внезапного останова турбины поток газа переключается полностью на ГРП и эта резервная нитка переводится на работу в расходном режиме. При этом ГРП обеспечивает редуцирование всего расхода газа, поступающего на промплощадку.
Турбина типа ТГУ-11 Уральского турбомоторного завода является высокооборотной бескомпрессорной машиной осевого типа, в которой энергия природного газа, выделяющаяся при его дросселировании, преобразуется в механическую, используемую для выработки электроэнергии.
Ниже приведены основные параметры турбины и основные технико-экономических показателей ГТРС.
Номинальное давление газа, МПа:
перед турбиной …………………………1,1
после турбины…………………………….0,17
Температура газа, С:
перед турбиной……………………………135
после турбины…………………………….17
Частота вращения ротора, об/мин…………………….3000
КПД (с учетом потерь на стопорных
и регулирующих клапанах), %.......................................85
Электрическая мощность, МВт……………………….11,5
Годовая выработка электроэнергии, тыс. кВтч………92299
Расход электроэнергии на собственные нужды, %......1,3
Срок окупаемости, лет…………………………………6,2
Технологической схемой ГТРС предусматривается подогрев газа перед турбиной, для того чтобы после понижения давления на лопаточном аппарате температура газа на выхлопе сохранялась положительной. Система подогрева газа представляет собой автономный контур: в качестве греющей среды используется конденсат, охлаждаемый со 170 до 70 С. Основными элементами этого контура являются экономайзер низкого давления, устанавливаемый непосредственно на одном из действующих котлов, и два подогревателя газа, размещаемые в здании ГТРС. В экономайзере низкого давления конденсат нагревается за счет теплоты уходящих газов котлов до 170 С. Затем теплота этого конденсата передается в подогревателе газов природному газу, в результате чего температура последнего перед турбиной повышается до 135 С.
Ввиду того что давление газа на входе в турбину (1,1 МПа) превышает давление конденсата в контуре, предотвращается попадание воды в турбину при разгерметизации подогревателей газа.
Каждый подогреватель газа представляет собой блок из трех вертикальных цилиндрических теплообменных аппаратов трубчатого типа (поверхность нагрева – 1092,5 м2); завод-изготовитель – ПО «Уралхиммаш» (г.Екатеринбург). Экономайзер низкого давления принят в мембранно-лепестковом исполнении (поверхность нагрева – 2048 м2); завод-изготовитель – ПО «ТКЗ» (г.Таганрог).
Расчет мощности расширительной турбины
Запишем первый закон термодинамики через внутреннюю энергию и энтальпию в следующем виде: и. Для адиабатного процесса, откуда получим два уравнения:и. Разделив второе уравнение на первое, получим следующее выражение:
. (150)
Интегрируя от первого состояния до второго и меняя пределы интегрирования
, получим выражение для уравнения адиабатного процесса , или в окончательном виде
. (151)
Работа адиабатного процесса выражается через изменение внутренней энергии
. Теплоемкости в процессах при постоянном давлении и при постоянном объеме связаны следующим соотношением: , отсюда теплоемкость при постоянном объеме может быть выражена как
. (152)
Тогда работа адиабатного процесса (рис. 69) может быть записана через изменение
Рис. 69. Процесс расширения в турбине
давлений и удельных объемов как
. (153)
Начальное значение давления и удельного объема перед турбиной иv1 заданы, известно давление природного газа после турбины. Удельный объем газа после расширения в турбине рассчитывается из уравнения адиабатного процесса .
При известном объемном расходе газа через турбину Gг суммарную мощность турбины можно рассчитать по выражению . Количество теплоты, которое необходимо затратить на предварительный подогрев газа в экономайзере, определится по выражению .
- В.А. Мунц Энергосбережение в энергетике и теплотехнологиях
- Глава 1. Вторичные энергоресурсы 15
- Энергоаудит
- Глава 1. Вторичные энергоресурсы
- 1.1. Газообразные горючие вэр
- 4 Кольцевой коллектор; 5 – смеситель;
- 8 Камера догорания; 9 трубчатый теплообменник; 10 горелка
- 1.2. Огневое обезвреживание шламов металлургических производств
- 1 Топка; 2 – барабанная печь; 3 – горелки для сжигания поверхностного масла;
- Глава 2. Утилизация высокотемпературных тепловых отходов
- 2.1. Газотрубные котлы-утилизаторы
- 1 Входная газовая камера; 2 испарительный барабан; 3 барабан сепаратора;
- 4 Сепарационное устройство; 5 трубы основного испарителя; 6 выходная камера;
- 7 Предвключенная испарительная поверхность
- 1 Газотрубная поверхность нагрева; 2 нижний барабан; 3 входная газовая камера;
- 4 Поворотная камера; 5 выходная газовая камера; 6 верхний барабан;
- 7 Пароперегреватель; 8 змеевики для разогрева при пуске
- 2.2. Водотрубные котлы-утилизаторы
- 4 Шламоотделитель; 5 – испаритель II ступени; 6 - балки; 7 - барабан; 8 – обдувочные линии; 9 - испаритель III ступени; 10 – экономайзер
- 2.3. Котлы-утилизаторы за обжиговыми печами серного колчедана
- 1 Печь с кипящим слоем; 2 испаритель, размещенный в кипящем слое;
- 3 Котел-утилизатор
- 1 Барабан; 2 вход газов; 3 труба в трубе;
- 4 Разделительная перегородка; 5 выход газов
- 1 К пароперегревателю, расположенному в кипящем слое;
- 2 От пароперегревателя; 3 испарительный блок; 4 ударная очистка
- 2.4. Установки сухого тушения кокса (устк)
- 2.5. Котлы-утилизаторы сталеплавильных конвертеров
- 1 Циркуляционные насосы; 2 – паровой аккумулятор; 3 — газоплотная юбка; 4 — горелки; 5 — подъемный газоход; 6 — барабан-сепаратор; 7 — конвективный испаритель;
- 12 Дымовая труба; 13, 14 — дымососы; 15смеситель; 16 — конвертер
- Глава 3. Энерготехнологические установки
- 3.1. Энерготехнологическое комбинирование в прокатном производстве
- 1 Проходная печь для нагрева металла; 2 нагреваемый металл; 3 газовые горелки;
- 4 Котел-утилизатор; 5 испарительные поверхности нагрева; 6 пароперегреватель;
- 7 Барабан; 8 водяной экономайзер; 9 воздухоподогреватель
- 3.2. Энерготехнологическое комбинирование в целлюлозно-бумажной промышленности
- 3.3. Энерготехнологическое комбинирование в доменном производстве
- Расчет тепловой схемы
- 3.4. Энерготехнологическое комбинирование при получении водорода
- 3.5. Охлаждение конструктивных элементов высокотемпературных установок
- 1 Теплообменная поверхность; 2 циркуляционный насос;
- Глава 4. Использование отработавшего пара
- 1 Производственная установка;
- 1 Производственный агрегат;
- 2 Пароочиститель; 3турбина мятого пара; 4турбина двойного давления;
- 5, 6 Тепловые аккумуляторы;
- Глава 5. Утилизация низкопотенциальных тепловых отходов
- 5.1. Утилизация теплоты загрязненных стоков
- 5.2. Утилизация теплоты агрессивных жидкостей
- 6 Теплообменники с промежуточным теплоносителем;
- 5.3. Утилизация теплоты вентиляционных выбросов
- 1 Приточный вентилятор; 2 вытяжной вентилятор; 3 пластинчатый теплообменник; 4 сборник конденсата; 5 фильтр наружного воздуха;
- 6 Фильтра удаляемого воздуха; 7 воздухонагреватель;
- 8 Воздухораспределитель
- Глава 6. Глубокое охлаждение продуктов сгорания
- 6.1. Влажный воздух, влажные продукты сгорания
- 6.2. Утилизация теплоты низкотемпературных дымовых газов
- 6.3. Расчет контактного экономайзера
- Глава 7. Парогазовые установки
- 7.1. Основные типы парогазовых установок
- 7.2. Количественные показатели термодинамических циклов пгу
- 7.3. Термическая эффективность парогазовых установок
- 7.4. Соотношения между параметрами газового и парового циклов
- 7.5. Парогазовые установки с впрыском пара
- 7.6. Модернизация котельных в тэц
- Глава 8. Энергосбережение в газовой промышленности
- 8.1. Опытно-промышленная газотурбинная расширительная станция (гтрс) на Среднеуральской грэс
- 8.2. Оптимальное использование теплоты уходящих газов газовых турбин
- 8.3. Теплоснабжение от утилизационных установок компрессорных станций
- Глава 9. Энергосбережение промышленности
- 9.1. Энергосбережение в котельных и тепловых сетях
- 1. Снижение потерь теплоты с уходящими газами
- 2. Потери теплоты с химической неполнотой сгорания
- 3. Потери теплоты в окружающую среду
- 4. Работа котельной установки в режиме пониженного давления
- 5. Температура питательной воды tв
- 6. Возврат конденсата в котельную
- 7. Использование тепловой энергии непрерывной продувки котлов
- 8. Режимы работы котельного оборудования
- 9. Перевод паровых котлов на водогрейный режим
- 10. Оптимизация работы насосного и тягодутьевого оборудования
- 9.2. Тепловые потери трубопроводов
- 9.3. Энергосбережение в компрессорном хозяйстве
- 9.4. Снижение теплопотерь за счет использования двухкамерного остекления
- 9.5. Система инфракрасного обогрева производственных помещений
- 8 Рабочие места в цехе
- Библиографический список
- 620002, Екатеринбург, ул. Мира,19
- 620002, Екатеринбург, ул. Мира,19