3.8. Балансировка шпинделей
Все шпиндели быстроходных станков проходят балансировку в собранном виде. Качество обрабатываемых на станке деталей во многом зависит от стабильности положения шпинделя в станке и плавности его вращения. Погрешности изготовления и монтажа шпинделя, а также неодинаковая плотность металла, из которого он сделан, приводят к неуравновешенности шпинделя, что при эксплуатации станка может вызвать вибрации.
Они снижают стойкость режущего инструмента, качество обработанной поверхности, вызывают усиленное изнашивание опор шпинделя и в ряде случаев вынуждают либо сильно снижать режимы резания, что ведет к понижению производительности, либо вообще прекращать работу.
Неуравновешенность может быть статической, когда не совпадает центр тяжести детали с осью вращения (она вызывает только центробежную силу), и динамической, когда действие неуравновешенных масс вызывает появление пары сил и центробежных моментов инерции, не равных нулю.
Для устранения неуравновешенности детали проходят балансировку. В соответствии с двумя видами неуравновешенности существуют и два вида балансировок — статическая и динамическая.
Статическую балансировку применяют обычно для деталей, у которых отношение длины к диаметру мало (маховики, диски, зубчатые колеса), так как влияние динамической неуравновешенности у них невелико. Балансировку производят на оправке с надетой на нее деталью, свободно перемещающейся на двух параллельных ножах или роликах под действием статического момента. Таким образом определяется радиальное направление приложения уравновешивающего груза.
У шпинделя станков с отношением длины к диаметру > 1. Так как на шпиндель монтируют ряд деталей (зубчатые колеса, кольца-гайки, подшипники, втулки, фланцы), то для него характерны оба вида неуравновешенности, поэтому его подвергают динамической балансировке в сборе, которая устраняет оба вида неуравновешенности.
Динамическую балансировку производят на специальных балансировочных станках. Балансировку шпинделей диаметром до 800 мм и весом 98...980 Н производят на станке 9Б725А.
Неуравновешенность шпинделя на этом станке определяется измерением амплитуды и фазы колебаний спор. Неуравновешенностьустраняют высверливанием металла в заданных местах балансируемой детали или узла в сборе с помощью двух специальных сверлильных головок, встроенных в балансировочный станок.
Так, допустимый дисбаланс шпинделя токарного станка 16К20 в сборе с монтируемыми на него деталями равен 25 г·см при частоте вращения шпинделя 33,3 с-1. При его балансировке металл высверливают на торце большого зубчатого колеса и заднего фланца.
- 1. Технологические процессы изготовления
- 1.1. Служебное назначение станин и рам
- 1.2. Конструкции станин
- 1.3. Технические требования к станинам
- 1.4. Изготовление заготовок литых станин
- 1.5. Изготовление заготовок сварных станин
- 1.6. Изготовление заготовок станин из бетона
- 1.7. Уменьшение коробления станин
- 1.8. Построение технологического процесса изготовления станин
- 1.9. Выбор технологических баз при разработке технологического процесса изготовления станин
- 1.10. Выбор методов и средств установки станин и разметка станин
- 1.11. Черновая обработка заготовок станин
- 1.12. Чистовая обработка станин
- 1.12. Упрочнение и отделка направляющих станин
- 1.13. Особенности изготовления станин
- 1.14. Особенности изготовления составных станин
- 1.15. Контроль станин
- 2. Технологические процессы изготовления
- 2.1. Характеристика корпусных деталей
- 2.2. Материалы и заготовки корпусных деталей
- 2.3. Технические требования на изготовление корпусных деталей
- 2.4. Базирование корпусных деталей
- 2.5. Типовые маршруты изготовления корпусных деталей
- 2.6. Контроль корпусных деталей
- 2.7. Обработка корпусных деталей
- 2.7.1. Гибкая автоматическая линия для обработки блока цилиндров
- 2.7.2. Классификационные признаки гибких производственных систем
- 2.7.3. Функциональные системы гпс
- 2.7.4. Оборудование, применяемое в гпс
- 2.7.5. Применение многоцелевых станков в гпс
- 3. Технологические процессы изготовления
- 3.1. Служебное назначение шпинделей и
- 3.2. Материал и способы получения заготовок
- 3.3. Технологический процесс обработки шпинделей
- 3.4. Термическая обработка шпинделей
- 3.5. Обработка поверхностей шпинделя после термической обработки
- 3.6. Отделочные операции наружных и внутренних поверхностей шпинделя
- 3.7. Особенности обработки шпинделей прецизионных станков
- 3.8. Балансировка шпинделей
- 3.9. Контроль шпинделей
- 4. Технологические процессы изготовления ходовых винтов
- 4.1. Служебное назначение ходовых винтов
- 4.2. Материалы для ходовых винтов
- 4.3. Технологический процесс изготовления ходовых винтов
- 4.4. Особенности изготовления прецизионных ходовых винтов
- 4.5. Контроль ходовых винтов
- 4.6. Изготовление винтов передач винт-гайка качения
- 4.7. Особенности изготовления длинных ходовых винтов
- 6. Технологические процессы изготовления валов
- 6.1. Особенности конструкций валов и требования к их точности
- 6.2.Типовые технологические процессы обработки валов
- 6.4. Изготовление вала в условиях массового производства
- 6.5. Особенности выполнения основных операций обработки валов
- 6.6.Контроль валов