6.1. Влажный воздух, влажные продукты сгорания
Масса паров в 1 м3 влажного воздуха, численно равная плотности пара п при парциальном давлении Pп , называется абсолютной влажностью. Отношение действительной абсолютной влажности воздуха п к максимально возможной абсолютной влажности н при той же температуре называют относительной влажностью и обозначают = п/н = Pп/Pн. Здесь Pп – парци-альное давление водяного пара во влажном воздухе, Pн – максимально возможное парциальное давление водяного пара при данной температуре.
Отношение массы водяного пара mп, содержащегося во влажном воздухе, к массе сухого воздуха mв называется влагосодержанием и измеряется в килограммах на килограмм сухих газов:
. (79)
Максимальное влагосодержание достигается при полном насыщении воздуха водяными парами (φ=1).
, кг/кг. (80)
Теплоемкость влажного воздуха рассчитывают как сумму теплоемкости 1 кг сухого воздуха и d кг пара:
кДж/(кгК). (81)
В диапазоне от 0 до 100 С св=1,0048 кДж/(кгК) теплоемкость водяных паров сп = 1,96 кДж/(кгК).
Энтальпия влажного воздуха определяется как энтальпия газовой смеси, состоящей из 1 кг сухого воздуха и d кг пара:
. (82)
Энтальпия сухого воздуха , энтальпия пара, содержащегося во влажном воздухе, достаточно точно может быть вычислена по формуле, в которой теплота испарения воды принята равной 2500 кДж/кг, а теплоемкость пара 1,96 кДж/(кгК).
Тогда энтальпия влажного воздуха (газа) может быть рассчитана как
. (83)
По данным формулам построена I-d диаграмма влажного воздуха (рис. 48).
Для процессов, связанных с глубоким охлаждением продуктов сгорания, могут быть использованы приведенные выше формулы (и I-d диаграмма), полученные для воздуха. Отличие заключаются в несколько различной молярной массе воздуха и продуктов сгорания.
Рис. 48. I-d диаграмма влажного воздуха
Для продуктов сгорания среднего состава, сжигаемых с коэффициентом избытка воздуха = 1,3 ( = 0,11; = 0,13;= 0,76), плотность и теплоемкость при 0 °С составляют соответственно ρ = 1,33 кг/м3, с = 1,068 кДж/(кг∙К); для воздуха соответствующие значения равны ρ = 1,29 кг/м3, = 1,009 кДж/(кг∙К).
Следует помнить, что I-d диаграмма построена для определенного барометрического давления, равного 745 мм рт. ст. Поэтому расчеты с использованием I-d диаграммы носят приблизительный характер. При необходимости проведения точных расчетов следует пользоваться формулами (79)-(85), с учетом отличия плотности продуктов сгорания от плотности воздуха.
Основными процессами при теплообмене являются процессы d = const и i = const.
При сухом охлаждении воздуха или продуктов сгорания, в конце концов, достигается температура, при которой относительная влажность достигает 100 %. Температура, соответствующая состоянию насыщения водяных паров, называется температурой точки росы. Она определяется из следующих соображений. При достижении температуры точки росы пар становится насыщенным. По известному влагосодержанию, которое рассчитывается по известному составу газов, рассчитывают давление насыщения, равное:
. (84)
По таблицам воды и насыщенного водяного пара определяют температуру, равную температуре насыщения. Количество теплоты, которое выделилось при охлаждении газов от начального состояния 1 до состояния соответствующего температуре точки росы, рассчитывается как разница энтальпий газа в соответствующих состояниях:
. (85)
Второй важной температурой, при известном состоянии продуктов сгорания, является температура мокрого термометра. Температуру мокрого термометра определяют из условия I-const:
.
Отсюда температура мокрого термометра рассчитывается как
. (86)
- В.А. Мунц Энергосбережение в энергетике и теплотехнологиях
- Глава 1. Вторичные энергоресурсы 15
- Энергоаудит
- Глава 1. Вторичные энергоресурсы
- 1.1. Газообразные горючие вэр
- 4 Кольцевой коллектор; 5 – смеситель;
- 8 Камера догорания; 9 трубчатый теплообменник; 10 горелка
- 1.2. Огневое обезвреживание шламов металлургических производств
- 1 Топка; 2 – барабанная печь; 3 – горелки для сжигания поверхностного масла;
- Глава 2. Утилизация высокотемпературных тепловых отходов
- 2.1. Газотрубные котлы-утилизаторы
- 1 Входная газовая камера; 2 испарительный барабан; 3 барабан сепаратора;
- 4 Сепарационное устройство; 5 трубы основного испарителя; 6 выходная камера;
- 7 Предвключенная испарительная поверхность
- 1 Газотрубная поверхность нагрева; 2 нижний барабан; 3 входная газовая камера;
- 4 Поворотная камера; 5 выходная газовая камера; 6 верхний барабан;
- 7 Пароперегреватель; 8 змеевики для разогрева при пуске
- 2.2. Водотрубные котлы-утилизаторы
- 4 Шламоотделитель; 5 – испаритель II ступени; 6 - балки; 7 - барабан; 8 – обдувочные линии; 9 - испаритель III ступени; 10 – экономайзер
- 2.3. Котлы-утилизаторы за обжиговыми печами серного колчедана
- 1 Печь с кипящим слоем; 2 испаритель, размещенный в кипящем слое;
- 3 Котел-утилизатор
- 1 Барабан; 2 вход газов; 3 труба в трубе;
- 4 Разделительная перегородка; 5 выход газов
- 1 К пароперегревателю, расположенному в кипящем слое;
- 2 От пароперегревателя; 3 испарительный блок; 4 ударная очистка
- 2.4. Установки сухого тушения кокса (устк)
- 2.5. Котлы-утилизаторы сталеплавильных конвертеров
- 1 Циркуляционные насосы; 2 – паровой аккумулятор; 3 — газоплотная юбка; 4 — горелки; 5 — подъемный газоход; 6 — барабан-сепаратор; 7 — конвективный испаритель;
- 12 Дымовая труба; 13, 14 — дымососы; 15смеситель; 16 — конвертер
- Глава 3. Энерготехнологические установки
- 3.1. Энерготехнологическое комбинирование в прокатном производстве
- 1 Проходная печь для нагрева металла; 2 нагреваемый металл; 3 газовые горелки;
- 4 Котел-утилизатор; 5 испарительные поверхности нагрева; 6 пароперегреватель;
- 7 Барабан; 8 водяной экономайзер; 9 воздухоподогреватель
- 3.2. Энерготехнологическое комбинирование в целлюлозно-бумажной промышленности
- 3.3. Энерготехнологическое комбинирование в доменном производстве
- Расчет тепловой схемы
- 3.4. Энерготехнологическое комбинирование при получении водорода
- 3.5. Охлаждение конструктивных элементов высокотемпературных установок
- 1 Теплообменная поверхность; 2 циркуляционный насос;
- Глава 4. Использование отработавшего пара
- 1 Производственная установка;
- 1 Производственный агрегат;
- 2 Пароочиститель; 3турбина мятого пара; 4турбина двойного давления;
- 5, 6 Тепловые аккумуляторы;
- Глава 5. Утилизация низкопотенциальных тепловых отходов
- 5.1. Утилизация теплоты загрязненных стоков
- 5.2. Утилизация теплоты агрессивных жидкостей
- 6 Теплообменники с промежуточным теплоносителем;
- 5.3. Утилизация теплоты вентиляционных выбросов
- 1 Приточный вентилятор; 2 вытяжной вентилятор; 3 пластинчатый теплообменник; 4 сборник конденсата; 5 фильтр наружного воздуха;
- 6 Фильтра удаляемого воздуха; 7 воздухонагреватель;
- 8 Воздухораспределитель
- Глава 6. Глубокое охлаждение продуктов сгорания
- 6.1. Влажный воздух, влажные продукты сгорания
- 6.2. Утилизация теплоты низкотемпературных дымовых газов
- 6.3. Расчет контактного экономайзера
- Глава 7. Парогазовые установки
- 7.1. Основные типы парогазовых установок
- 7.2. Количественные показатели термодинамических циклов пгу
- 7.3. Термическая эффективность парогазовых установок
- 7.4. Соотношения между параметрами газового и парового циклов
- 7.5. Парогазовые установки с впрыском пара
- 7.6. Модернизация котельных в тэц
- Глава 8. Энергосбережение в газовой промышленности
- 8.1. Опытно-промышленная газотурбинная расширительная станция (гтрс) на Среднеуральской грэс
- 8.2. Оптимальное использование теплоты уходящих газов газовых турбин
- 8.3. Теплоснабжение от утилизационных установок компрессорных станций
- Глава 9. Энергосбережение промышленности
- 9.1. Энергосбережение в котельных и тепловых сетях
- 1. Снижение потерь теплоты с уходящими газами
- 2. Потери теплоты с химической неполнотой сгорания
- 3. Потери теплоты в окружающую среду
- 4. Работа котельной установки в режиме пониженного давления
- 5. Температура питательной воды tв
- 6. Возврат конденсата в котельную
- 7. Использование тепловой энергии непрерывной продувки котлов
- 8. Режимы работы котельного оборудования
- 9. Перевод паровых котлов на водогрейный режим
- 10. Оптимизация работы насосного и тягодутьевого оборудования
- 9.2. Тепловые потери трубопроводов
- 9.3. Энергосбережение в компрессорном хозяйстве
- 9.4. Снижение теплопотерь за счет использования двухкамерного остекления
- 9.5. Система инфракрасного обогрева производственных помещений
- 8 Рабочие места в цехе
- Библиографический список
- 620002, Екатеринбург, ул. Мира,19
- 620002, Екатеринбург, ул. Мира,19