Принцип действия тепловых двигателей. Кпд теплового двигателя
Тепловым двигателем называется устройство, способное превращать часть полученного количества теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом. Тепловой резервуар с более высокой температурой, передающий теплоту тепловому двигателю, называется нагревателем, а забирающий остатки тепла с целью вернуть рабочее тело в исходное состояние – холодильником. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т.д.) работают циклически. Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется.
Необходимые условия для работы циклического теплового двигателя:
1. Наличие рабочего тела (газ или пар), которое нагреваясь при сгорании топлива расширяется и совершает механическую работу. Периодический тепловой двигатель не может совершать полезную работу, если в нем используется незамкнутый термодинамический процесс. Газ должен расширяется при высокой температуре Т1, а сжимается при более низкой Т2. Круговым процессом (циклом) называют замкнутый термодинамический процесс, в результате которого система возвращается в исходное состояние. Обратимым называют такой процесс, который может осуществляться и в прямом, и в обратном направлениях таким образом, что после возвращения системы в исходное состояние в окружающих телах не остается никаких изменений, вызванных этим процессом.
2. Использование кругового процесса (цикла).
3. Наличие нагревателя и холодильника. Нагревателем называют тело или среду с температурой более высокой, чем у рабочего тела, а холодильником — тело или среду с температурой более низкой, чем у рабочего тела.
При работе теплового двигателя выполняется закон сохранения энергии
Коэффициентом полезного действия (КПД) теплового двигателя называется отношение полезной работы, совершенной двигателем, ко всей энергии Q1, полученной при сгорании топлива (то есть от нагревателя): .
КПД теплового двигателя всегда меньше единицы.
Для определения максимально возможного значения КПД теплового двигателя французский инженер С. Карно рассчитал идеальный обратимый цикл, состоящий из двух изотерм и двух адиабат, который впоследствии получил название цикла Карно (на рисунке 1-2—изотермическое расширение; 2-3 — адиабатное расширение идеального газа; 3-4 — изотермическое сжатие, 4-1 — адиабатное сжатие газа. Карно показал, что КПД такого цикла не зависит от конструкции теплового двигателя и определяется по формуле , где T1 – температура нагревателя, T2 – холодильника. КПД даже у идеального теплового двигателя всегда меньше единицы. Если температура холодильника равна абсолютному нулю, то циклический процесс вырождается. Принципиально невозможно добиться того, чтобы КПД теплового двигателя был равен единице. У реальных тепловых двигателей КПД меньше, чем у цикла Карно, т. е. значительно меньше единицы. Для увеличения КПД обычно увеличивают температуру нагревателя. Холодильником является окружающая среда.
- Основные положения мкт. Доказательство существования молекул. Размеры и масса молекул.
- Строение газообразных, жидких и твердых тел
- Опыт Штерна. Распределение молекул по скоростям
- Идеальный газ. Изопроцессы.
- Абсолютная температурная шкала. Абсолютный нуль температуры.
- Уравнение состояния идеального газа Менделеева - Клапейрона
- Основное уравнение молекулярно-кинетической теории идеального газа
- Внутренняя энергия. Внутренняя энергия идеального газа
- Количество теплоты
- Первый закон термодинамики и его применение к различным процессам
- 1. Изобарный процесс. Работа газа.
- 2. Изохорный процесс. Теорема Майера
- 3. Изотермический процесс
- 4. Адиабатный процесс
- Принцип действия тепловых двигателей. Кпд теплового двигателя
- Испарение и конденсация. Насыщенные и ненасыщенные пары. Парообразование. Конденсация. Испарение.
- Кипение. Удельная теплота парообразования.
- Влажность воздуха
- Поверхностное натяжение жидкостей. Свойства поверхностного слоя жидкости
- Капиллярные явления. Смачивание и несмачивание
- Кристаллические и аморфные тела. Свойства твердых тел
- Сила упругости. Закон Гука. Виды деформаций
- Реальные газы. Уравнение Ван-дер-Ваальса
- Изотерма реального газа. Критическая температура
- Диаграмма состояния вещества.
- Двигатели внутреннего сгорания.
- Паровая и газовая турбины
- Необратимость тепловых процессов. Второй закон термодинамики и его статистический смысл
- Теплоемкость твердых тел.