6.Гравитационное поле, потенциальная энергия гравитационного поля
Гравитацио́нное по́ле - физическое поле, через которое осуществляется гравитационное взаимодействие
В рамках классической физики гравитационное взаимодействие описывается «законом всемирного тяготения» Ньютона, согласно которому сила гравитационного притяжения между двумя материальными точками с массами m1 и m2 пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними:
Здесь G — гравитационная постоянная, приблизительно равная м³/(кг с²), R — расстояние между точками.
Потенциальная энергия частицы в гравитационном поле равна ее массе, умноженной на потенциал поля. Для потенциальной энергии любого распределения масс справедливо выражение:
где μ — плотность массы тела, — гравитационный потенциал, V — объём тела.
Гравитационная энергия — потенциальная энергия системы тел (частиц), обусловленная их взаимным тяготением.
Общепринята шкала, согласно которой для любой системы тел, находящихся на конечных расстояниях, гравитационная энергия отрицательна, а для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационную энергия равна нулю. Полная энергия системы, равная сумме гравитационной и кинетической энергии постоянна, для изолированной системы гравитационная энергия является энергией связи. Системы с положительной полной энергией не могут быть стационарными.
Для двух тяготеющих точечных тел с массами M и m гравитационная энергия Ug равна:
,где: - гравитационная постоянная; - расстояние между центрами масс тел.
Этот результат получается из закона тяготения Ньютона, при условии, что для бесконечно удалённых тел гравитационная энергия равна 0. Выражение для гравитационной силы имеет вид где: Fg — сила гравитационного взаимодействия
С другой стороны согласно определению потенциальной энергии:
Тогда: ,
Константа в этом выражении может быть выбрана произвольно. Её обычно выбирают равной нулю, чтобы при r, стремящемуся к бесконечности, Ug стремилось к нулю.
Этот же результат верен для малого тела, находящегося вблизи поверхности большого. В этом случае R можно считать равным h + RM, где RM — радиус тела массой M, а h — расстояние от центра тяжести тела массой m до поверхности тела массой M.
На поверхности тела M имеем:
,
Если размеры тела M много больше размеров тела m, то формулу гравитационной энергии можно переписать в следующем виде:
,
где величину называют ускорением свободного падения. При этом член не зависит от высоты поднятия тела над поверхностью и может быть исключён из выражения путём выбора соответствующей константы. Таким образом для малого тела, находящегося на поверхности большого тела справедлива следующая формула
Ug = mgh
В частности, эта формула применяется для вычисления потенциальной энергии тел, находящихся вблизи поверхности Земли.
- 1.Кинематика. Перемещение, скорость, ускорение.
- 2.Законы Ньютона
- 3.Закон сохранения импульса
- 4.Работа, кинетическая энергия
- 5.Потенциальные силы, потенциальная энергия, закон сохранения энергии
- 6.Гравитационное поле, потенциальная энергия гравитационного поля
- 7.Центральный удар, абсолютно упругий и абсолютно неупругий удар
- 8.Вращательное движение, угловая скорость, угловое ускорение
- 9.Момент инерции, момент сил, закон вращательного движения
- 10.Термодинамическое уравнение состояния идеального газа
- 11.Кинетическое уравнение состояния идеального газа, внутренняя энергия
- 12.Барометрическая формула Больцмана
- 13.Распределение Максвелла
- 14.Броуновское движение
- 15.Первое начало термодинамики. Работа, теплота ,внутренняя энергия.
- 16.Изобарический и изохорические процессы, теплоемкость в таких процессах
- 17.Изотермический и адиабатический процессы: реализация, работа и уравнения
- 18.Второе начало термодинамики, формулировки Томпсона и Клаузиуса
- 19.Цикл Карно
- Описание цикла Карно:
- 20.Энтропия: определение, закон возрастания энтропии
- 21.Процессы переноса, законы Фика и Фурье
- 22.Закон Кулона, напряженность электрического поля, закон суперпозиции
- 23.Опыт Милликена, заряд электрона.
- 24.Поле электрического диполя
- 25.Теорема Гаусса, примеры ее применения
- 26.Потенциал электрического поля
- 27.Проводники и диэлектрики во внешнем поле
- 28.Диэлектрики, диэлектрическая проницаемость, восприимчивость и вектор поляризации
- 29.Электрическое поле на границе диэлектриков
- 30.Электрическая ёмкость проводника, конденсатор
- 31.Энергия электрического поля