17.Изотермический и адиабатический процессы: реализация, работа и уравнения
Изотермический процесс — термодинамический процесс, происходящий в физической системе при постоянной температуре.
Для осуществления изотермического процесса систему обычно помещают в термостат, теплопроводность которого велика, так что теплообмен с системой происходит достаточно быстро по сравнению со скоростью протекания процесса, и, температура системы в любой момент практически не отличается от температуры термостата. Графиком изотермического процесса является изотерма.
В идеальном газе при изотермическом процессе произведение давления на объём постоянно (закон Бойля-Мариотта). Изотермы идеального газа в координатах p,V — гиперболы, расположенные на графике тем выше, чем выше температура, при которой происходит процесс .
При изотермическом процессе системе, вообще говоря, сообщается определённое количество теплоты (или она отдаёт теплоту) и совершается внешняя работа. Альтернативный процесс, при котором теплообмен с окружающей средой отсутствует (термодинамическая система находится в энергетическом равновесии — система не поглощает и не выделяет тепло), называется адиабатическим процессом.
Работа, совершенная идеальным газом в изотермическом процессе, равна , где — число частиц газа, — температура, и — объём газа в начале и конце процесса, — постоянная Больцмана .
В твёрдом теле и большинстве жидкостей изотермические процессы очень мало изменяют объём тела, если только не происходит фазовый переход.
Первый закон термодинамики для изотермического процесса в идеальном газе записывается в виде:
Адиабатический процесс — термодинамический процесс в макроскопической системе, при котором система не получает и не отдаёт тепловой энергии. В общем случае адиабатический процесс необратим.
Линия, изображающая адиабатный процесс на какой-либо термодинамической диаграмме, называется адиабатой.
Для адиабатического процесса первое начало термодинамики в силу отсутствия теплообмена (ΔQ = 0) системы со средой имеет вид , где: — изменение внутренней энергии тела, — работа, совершаемая системой, — теплота, полученная системой
Основное уравнение термодинамики применительно к адиабатическому процессу записывается в дифференциалах как ,
где — дифференциальное выражение для работы, ai — внешние параметры, Ai — соответствующие им внутренние параметры. В частном случае, когда работа совершается через изменение объёма, , где p — давление.
Для идеальных газов адиабата имеет простейший вид и определяется уравнением: , где: — давление газа, — его объём, — показатель адиабаты, и — теплоёмкости газа соответственно при постоянном давлении и постоянном объёме.
Показатель адиабаты: Для нерелятивистского невырожденного одноатомного идеального газа , для двухатомного , для трёхатомного , для газов состоящих из более сложных молекул, показатель адиабаты, определяется числом степеней свободы конкретной молекулы.
При адиабатическом процессе показатель адиабаты равен , где R — универсальная газовая постоянная.
С учётом уравнения состояния идеального газа уравнение адиабаты может быть преобразовано к виду:
, где T — абсолютная температура газа.
Или к виду:
Поскольку всегда больше 1, из последнего уравнения следует, что при адиабатическом сжатии (т.е. при уменьшении V) газ нагревается (T возрастает), а при расширении — охлаждается, что всегда верно и для реальных газов.
- 1.Кинематика. Перемещение, скорость, ускорение.
- 2.Законы Ньютона
- 3.Закон сохранения импульса
- 4.Работа, кинетическая энергия
- 5.Потенциальные силы, потенциальная энергия, закон сохранения энергии
- 6.Гравитационное поле, потенциальная энергия гравитационного поля
- 7.Центральный удар, абсолютно упругий и абсолютно неупругий удар
- 8.Вращательное движение, угловая скорость, угловое ускорение
- 9.Момент инерции, момент сил, закон вращательного движения
- 10.Термодинамическое уравнение состояния идеального газа
- 11.Кинетическое уравнение состояния идеального газа, внутренняя энергия
- 12.Барометрическая формула Больцмана
- 13.Распределение Максвелла
- 14.Броуновское движение
- 15.Первое начало термодинамики. Работа, теплота ,внутренняя энергия.
- 16.Изобарический и изохорические процессы, теплоемкость в таких процессах
- 17.Изотермический и адиабатический процессы: реализация, работа и уравнения
- 18.Второе начало термодинамики, формулировки Томпсона и Клаузиуса
- 19.Цикл Карно
- Описание цикла Карно:
- 20.Энтропия: определение, закон возрастания энтропии
- 21.Процессы переноса, законы Фика и Фурье
- 22.Закон Кулона, напряженность электрического поля, закон суперпозиции
- 23.Опыт Милликена, заряд электрона.
- 24.Поле электрического диполя
- 25.Теорема Гаусса, примеры ее применения
- 26.Потенциал электрического поля
- 27.Проводники и диэлектрики во внешнем поле
- 28.Диэлектрики, диэлектрическая проницаемость, восприимчивость и вектор поляризации
- 29.Электрическое поле на границе диэлектриков
- 30.Электрическая ёмкость проводника, конденсатор
- 31.Энергия электрического поля