74 Абразивно-жидкостная отделка
Отделка объемно-криволинейных, фасонных поверхностей обычными методами вызывает большие технологические трудности. Метод абразивно-жидкостной отделки позволяет решить задачу сравнительно просто. На обрабатываемую поверхность, имеющую следы предшествующей обработки, подают струи антикоррозионной жидкости со взвешенными частицами абразивного порошка (рис. 6.92, а). Водно-абразивная суспензия перемещается под давлением с большой скоростью. Частицы абразива ударяются о поверхность заготовки и сглаживают микронеровности. Интенсивность съема обрабатываемого материала регулируется зернистостью порошка, давлением струи и углом р. Изменяя скорость полета и размер свободных абразивных зерен, можно увеличить степень пластической деформации и шероховатость поверхности.
В качестве абразива часто применяют электрокорунд. В суспензии содержится 30 ... 35 % абразива (по массе).
Наибольший съем металла получается при угле Р = 45°
ОБРАБОТКА ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ
Методы обработки без снятия стружки все больше применяют для деталей в связи с ужесточением эксплуатационных характеристик машин: высокой производительности, быстроходности, прочности, точности и др. Такой обработке подвергают предварительно подготовленные поверхности.
Если формы заготовок приблизить к формам готовых деталей, то ответственные поверхности можно обрабатывать шлифованием и затем окончательно од ним из методов обработки без снятия стружки. Предоставляется возможность уменьшить количество отходов и упростить обработку.
.ХОНИНГОВАНИЕ
Хонингование применяют для получения поверхностей высокой точности и малой шероховатости, а также для создания специфического микропрофиля обработанной поверхности в виде сетки. Такой профиль необходим для удержания смазочного материала при работе машины (например, двигателя внутреннего сгорания) на поверхности ее деталей.
Поверхность неподвижной заготовки обрабатывают мелкозернистыми абразивными брусками, которые закрепляют в хонинговальной головке (хоне). Бруски вращаются и одновременно перемещаются возвратно-поступательно вдоль оси обрабатываемого цилиндрического отверстия
СУПЕРФИНИШ
Суперфинишем в основном уменьшают шероховатость поверхности, оставшуюся от предыдущей обработки. При этом изменяются глубина и вид микронеровностей, обрабатываемые поверхности получают сетчатый рельеф. Поверхность становится чрезвычайно гладкой, что обеспечивает более благоприятные условия взаимодействия трущихся поверхностей.
Поверхности обрабатывают абразивными брусками, устанавливаемыми в специальной головке. Для суперфиниша характерно колебательное движение брусков наряду с движением заготовки. Процесс резания происходит при давлении брусков (0,5 ... 3) 105 Па и в присутствии смазочного материала малой вязкости.
Процесс характеризуется сравнительно малыми скоростями главного движения резания (0,08 ... 0,2 м/с).
Важную роль играет смазочно-охлаждающая жидкость. Масляная пленка покрывает обрабатываемую поверхность, но наиболее крупные микровыступы (рис. 6.96, 6) прорывают ее и в первую очередь срезаются абразивом. Давление брусков на выступы оказывается большим. По мере дальнейшей обработки давление снижается, так как все большее число выступов прорывает масляную пленку.
При обработке сталей лучших результатов достигают при применении брусков из электрокорунда, при обработке чугуна и цветных металлов - из карбида кремния. В большинстве случаев применяют бруски на керамической или бакелитовой связках. Большое влияние на ход процесса оказывает твердость брусков.
Поверхности деталей машин, обработанные на металлорежущих станках, всегда имеют отклонения от правильных геометрических форм и заданных размеров.
Эти отклонения могут быть устранены притиркой (абразивной доводкой). Таким методом могут быть обеспечены шероховатость поверхности до Кг = 0,05 ... 0,01 мкм, отклонения размеров и формы обработанных поверхностей до 0,05 ... 0,3 мкм. Доводка может быть осуществлена вручную и механическим способом.
По сравнению с ручной доводкой механическая абразивная доводка позволяет повысить производительность в 2 ... 6 раз, и при этом обеспечивается стабильность выходных - эксплуатационных характеристик деталей агрегатов и машин (гидравлической, пневматической и топливной аппаратуры, зубчатых колес, шариков и колец подшипников качения и др.), выходных параметров кремниевых подложек, кварцевых кристаллических элементов, керамических опор гидроприборов и д . ПОЛИРОВАНИЕ ЗАГОТОВОК
Полированием уменьшают шероховатость поверхности. Этим методом получают зеркальный блеск на ответственных частях деталей (дорожки качения подшипников) либо на деталях, применяемых для декоративных целей (облицовочные части автомобиля). Для этого используют полировальные пасты или абразивные зерна, смешанные со смазочным материалом. Эти материалы наносят на быстро-вращающиеся эластичные (например, фетровые) круги или колеблющиеся щетки. Хорошие результаты дает полирование быстродвижущимися бесконечными абразивными лентами (шкурками).
- 1. Исходные материалы для металлургии: руда, флюсы, огнеупоры, топливо; пути повышения температуры горения металлургического топлива. Дайте определения и примеры химических формул.
- 2. Сущность процессов шлакования; роль шлаков и флюсов в металлургии (на примере доменной плавки).
- 3. Окислительно-восстановительные реакции в металлургии (на примере производства чугуна и стали).
- 4. Сущность доменного процесса; исходные материалы для получения чугуна, продукты доменной плавки, оценка эффективности работы доменной печи. Схема и принцип работы доменной печи.
- 5. Сталь. Сущность процесса получения стали методом прямого восстановления железа из руды. Приведите примеры восстановительных химических реакций при прямом восстановлении железа из руды.
- 6.Сущность процесса передела чугуна на сталь. Сравнительная характеристика основных способов производства стали: в конвертерах, в мартенах, электропечах.
- 7.Кислородно-конверторный способ получения стали: исходные материалы, технология, технико-экономические показатели. Схема кислородного конвертера.
- 8. Мартеновский способ получения стали: исходные материалы, технология, технико-экономические показатели. Схема мартеновской печи.
- 9. Плавка стали в электропечах: сущность процесса, исходные материалы, преимущества, область использования. Схема электропечи для выплавки стали.
- 11. Разливка стали, разливка в изложницы, непрерывная разливка, строение стального слитка. Схемы разливки в изложницу, схема непрерывной разливки стали, схемы слитков спокойной и кипящей стали.
- 12. Классификация отливок и способов литья по масштабу производства и технологическому признаку (примеры литья в разовые и постоянные формы).
- 13. Литейные свойства сплавов: жидкотекучесть, усадка , смачиваемость, газопоглощение, химическая активность, ликвация. Сравнение литейных свойств стали и чугуна.
- 14. Основные литейные сплавы: чугуны, силумины, бронзы, стали; связь их литейных свойств с технологией изготовления и качество литейной продукции.
- 15. Литье в песчаные формы: конструкция формы, литейная оснастка, формовочные материалы, область применения. Преимущества и недостатки литья в песчаные формы.
- 16. Литьё в оболочковые формы: исходные материалы, технология изготовления оболочки, область применения способа. Схема получения отливки. Преимущества и недостатки литья в оболочковые формы.
- 18.Литьё в кокиль: требования к кокилю и отливкам, облицованные кокили; область использования процесса. Принципиальная схема кокиля. Преимущества и недостатки пресса.
- 19. Литьё под давлением: сущность процесса, область использования. Принципиальная схема формы для литья под давлением. Преимущества и недостатки процесса.
- 20. Центробежное литьё: сущность процесса, область использования, преимущества и недостатки. Принципиальная схема центробежного литья.
- 21. Характеристика основных способов получения машиностроительных профилей; их сравнительная характеристика (прокатка, прессование, волочение). Принципиальные схемы указанных процессов.
- 22. Понятие о горячей и холодной обработке металлов давлением. Наклеп и рекристаллизация. Изменение механических свойств при наклепе и при последующем нагреве.
- 23.Пластичность металлов, влияние на пластичность химического состава, температуры нагрева, схемы напряженного состояния, скорость деформации.
- 24.Основные законы обработки давлением: постоянства объема наименьшего сопротивления, подобия; использование их в практике.
- 26.Прокатка металла
- 27. Ковка. Обл использования.
- Вопрос 29.
- Вопрос 30.
- 31. Ручная дуговая сварка: принципиальная схема, источники тока, сварочные материалы, режимы сварки. Приведите примеры: марки электродной проволоки, марка электрода, тип электрода.
- 32. Дуговая сварка в углекислом газе: принципиальная схема, источники сварочного тока, сварочные материалы, режимы сварки, область применения.
- 33. Аргонодуговая сварка: принципиальные схемы и разновидности, область использования.
- 34 . Автоматическая и механизированная сварка под флюсом: Принципиальные схемы, сварочные материалы, преимущества процесса и область применения.
- 36. Металлургические процессы при сварке: диссоциация веществ, насыщение металла o, n, h, процессы раскисления, шлакования, рафинирования металла сварного шва.
- 37 . Сварочные материалы.
- 38. Тепловые процессы
- 39 . Контактная сварка
- 40. Сущность процесса и материалы для пайки
- 45. Силы резания
- 49)Основные конструктивные части металлорежущих инструментов. Основные поверхности и кромки токарного резца.
- 50. Определение углов токарного резца в статической системе координат, их назначение и влияние на процесс резания.
- 51. Инструментальные материалы: инструментальные стали, твердые сплавы, режущая керамика, сверхтвердые инструментальные материалы. Их назначение и обозначение.
- Инструментальные стали
- Металлокерамические твердые сплавы
- Твердые сплавы с покрытием
- Стойкость металлорежущих инструментов
- Допустимая скорость резания металлов
- 55. Общее устройство основных составных частей универсальных металлорежущих станков: несущих систем, приводов движений, рабочих органов и вспомогательных систем. Основные составные части
- Несущие системы мс
- Приводы главного движения (пгд)
- Исполнительные механизмы
- Вспомогательные системы
- 57. Кинемат характ приводов станка
- 61. Параметры режима резания на токарных станках и последовательность определения их рационального сочетания.
- 65. Сверление. Основные типы сверлильных станков и их назначение. Параметры режима резания при сверлении (V, s, t, to) и последовательность их рационального сочетания.
- 66. Параметры режима резания на фрезерных станках и последовательность определения их рационального.
- 73. Характеристика метода шлифования
- 74 Абразивно-жидкостная отделка
- 75 Чистовая обработка пластическим деформированием