Влияние фракционного состава сырья на показатели процесса депарафинизации
Показатели | Пределы выкипания исходных фракций, оС | |
375-515 | 380-460 | |
Температура фильтрования, оС Длительность фильтрования 100 мл, с Выход депарафинированного масла, % Температура застывания депарафинированного масла, оС Содержание масла в гаче, % мас. | -28 120 65 -20
40 | -28 48 79 -20
25 |
Для процесса кристаллизации большое значение имеет глубина очистки рафината.
Смолы при малой концентрации в растворе тормозят образование зародышей кристаллов твердых углеводородов и не влияют на рост уже образовавшихся кристаллов. В результате получаются более крупные кристаллы, чем в отсутствие смол. Увеличиваются скорость фильтрования и выход депарафинированного масла. Однако существует оптимальное содержание смол, выше которого рост кристаллов затрудняется и показатели процесса ухудшаются. Это объясняется тем, что высокое содержание смол повышает вязкость сырья при низкой температуре и затрудняет рост кристаллов.
Для каждого вида сырья существует свой оптимум содержания смол. Он зависит от происхождения нефти и от вида сырья (остаточное или дистиллятное).
| Природа и состав растворителя. Неполярные растворители не применяются для депарафинизации нефтяного сырья, так как имеют ряд недостатков: низкая избирательность, высокий температурный эффект депарафинизации (ТЭД), высокое содержание масла в гаче или петролатуме, необходимость медленного охлаждения, в случае пропана – необходимость повышенного давления в аппаратах установки. В полярных растворителях (ацетон, метилэтилкетон – МЭК) твердые углеводороды растворяются только при повышенных температурах. При низких температурах такие растворители не растворяют твердые углеводороды, но плохо растворяют и жидкие компоненты сырья, поэтому в гаче или петролатуме остается большое количество масла. Для повышения растворяющей способности кетонов к ним добавляют толуол. В смеси растворителей кетон является осадителем твердых углеводородов, а толуол – растворителем масляной части сырья. |
Р и с. . Влияние содержания кетона в растворителе на показатели депарафинизации маловязкого рафината: 1 – ацетон; 2 – МЭК |
На зарубежных НПЗ применяют в качестве растворителей кетоны большей молекулярной массы: метилизобутилкетон, метилпропилкетон, метилизопропилкетон и др. Эти кетоны обладают повышенной растворяющей способностью при лучшей избирательности и применяются без добавления ароматического соединения. Важным их достоинством является низкий (практически нулевой) ТЭД, большая относительная скорость фильтрования и большой выход депарафинизата
В качестве растворителей применяют также смесь дихлорэтана с метиленхлоридом (процесс Di – Me). Дихлорэтан (50 – 70 %) является осадителем твердых углеводородов, метиленхлорид (50-30 %) – растворитель масляной части сырья. ТЭД близок к нулю. Одно из достоинств процесса – высокая скорость фильтрования суспензии. Растворители не образуют взрывчатых смесей и негорючи, поэтому на установках отсутствует система инертного газа. Недостаток процесса – термическая нестабильность растворителя. Продукты разложения коррозионно-агрессивны. Процесс Di – Me проводится на том же оборудовании, что и процесс депарафинизации кетон-ароматическими растворителями.
Соотношение сырье : растворитель. Степень разбавления сырья растворителем влияет на кристаллизацию твердых углеводородов, а размер кристаллов– на выход масла, четкость разделения компонентов, ТЭД, скорость охлаждения и фильтрования. При выборе оптимальной кратности учитываются все эти факторы.
Чем выше температурные пределы выкипания фракции, тем выше ее вязкость и требуется большая кратность разбавления сырья растворителем. При глубокой депарафинизации кратность увеличивается. Чем ниже температура охлаждения раствора, тем выше кратность.
Скорость охлаждения раствора сырья. Обычно в период образования кристаллов скорость охлаждения не выше 80-100оС/ч, затем ее увеличивают до 200-400оС/ч.
Принципиальная схема промышленной установки депарафинизации нефтяного сырья кристаллизацией из растворов.
Установки депарафинизации рафинатов и обезмасливания гачей и петролатумов являются наиболее сложными, многостадийными, трудоемкими и дорогостоящими в производстве нефтяных масел.
Сырье и растворитель в смесителе 1 смешиваются в определенном соотношении. Смесь нагревается в паровом подогревателе 2. Если температура сырья выше 60оС, то термообработку не проводят. Далее раствор сырья охлаждают в водяном холодильнике 3 и регенеративном кристаллизаторе 4, где хладоагентом служит раствор депарафинированного масла (фильтрат) V. Затем охлаждение продолжается в аммиачных кристаллизаторах 5, где хладоагентом служит испаряющийся аммиак. Если температура конечного охлаждения раствора ниже -30оС, то в качестве хладоагента на последней стадии после охлаждения аммиаком используется этан. Холодная суспензия твердых углеводородов в растворе масла поступает в фильтры (на некоторых установках - на центрифуги) для отделения твердой фазы от жидкой. Осадок твердых углеводородов на фильтре промывается холодным растворителем, затем поступает в шнековое устройство. Туда также добавляется некоторое количество растворителя, обеспечивающее возможность перемещения осадка. В результате фильтрования получают раствор депарафинированного масла, содержащий 75-80 % растворителя, и раствор твердых углеводородов с небольшим содержанием масла. Оба раствора направляют в секции регенерации растворителя 7 и 8.
Р и с. Принципиальная блок-схема установки депарафинизации: 1 – смеситель; 2 – паровой подогреватель; 3 – водяной холодильник; 4 – регенеративный кристаллизатор; 5 – аммиачный кристаллизатор; 6 – ваккумный фильтр; 7 – отделение регенерации растворителя из раствора депарафинированного масла; 8 - отделение регенерации растворителя из раствора гача или петролатума; I – сырье; II – растворитель; III – раствор сырья; IV – суспензия твердых углеводородов; V – раствор депарафинированного масла; VI – раствор гача или петролатума; VII –депарафинированное масло; VIII – твердые углеводороды (гач или петролатум) |
- 1. Желательные и нежелательные компоненты масел.
- 2. Классификация базовых масел по api
- Классификация базовых масел по api
- 5. Факторы, определяющие эффективность процесса деасфальтизации в растворе пропана.
- 6. Избирательные растворители процесса селективной очистки и их сравнительная оценка (на примере фенола и n-метилпирролидона).
- Характеристика депарафинированных масел, предварительно очищенных n-метилпирролидоном и фенолом (дистиллятное сырье)
- Характеристика фенола и n-метилпирролидона
- 7. Факторы, определяющие эффективность процесса селективной очистки и качество получаемых продуктов.
- 8. Назначение, сырье, продукты процесса селективной очистки. Изменение качества сырья в процессе селективной очистки.
- 9. Назначение, сырье, продукты процесса депарафинизации нефтяного сырья кристаллизацией из растворов. Изменение показателей качества сырья в процессе.
- Факторы, определяющие эффективность процесса депарафинизации нефтяного сырья кристаллизацией из растворов. Температурный эффект депарафинизации (тэд).
- Влияние фракционного состава сырья на показатели процесса депарафинизации
- Химические превращения компонентов тяжелого нефтяного сырья под действием водорода.
- Условия и сырье процесса гидроочистки масляного сырья. Катализаторы процесса.
- Качество депарафинированного масла IV масляной фракции, полученного по различным схемам
- Варианты поточных схем производства масел с использованием процесса гидроочистки.
- Гидрирование в производстве масел.
- Изменение показателей качества сырья в гидроочистки
- Основные химические реакции, протекающие в процессе гидроочистки дизельного топлива
- Технологические параметры процесса гидроочистки дизельного топлива
- Место гидроочистки с схеме нпз
- Технологические параметры и материальный баланс процессов гидроочистки различных видов сырья
- Технологические режимы процессов гидроочистки
- Материальные балансы процессов гидроочистки
- Катализаторы процесса гидроочистки дизельного топлива. Сульфидирование катализаторов
- Усредненные данные показателей работы отечественных промышленных катализаторов на установках гидроочистки дизельного топлива
- Синтетические масла. Полиальфаолефины.
- Синтетические масла: сложные эфиры дикарбоновых кислот.
- Синтетические масла: сложные эфиры неопентиловых спиртов.
- Синтетические масла: эфиры фосфорной кислоты, полиорганосилоксаны.
- Послойная загрузка катализаторов гидроочистки.
- Величины долей свободного объема, размера пустот и значения перепада давления
- Послойная загрузка верхней части катализаторного слоя (фирма Topsøe)