2.2 Обоснование выбора типа регулятора
Для того, чтобы правильно выбрать необходимый тип вносимого в систему регулятора, исследуем переходный процесс объекта управления на основании передаточной функции W(p) ТОУ полученной в предыдущем разделе. Построим функциональную схему в SIMULINK и с помощью LTI получим переходную характеристику объекта управления:
Рисунок 2.2.1 Схема моделирования САР в SIMULINK
Рисунок 2.2.2 Переходная характеристика ТОУ
По виду переходной характеристики можно сказать, что имеющиеся показатели точности и качества нас не удовлетворяют:
· время регулирования составляет 42.1 с.
· статическая ошибка составляет 83 %.
Для обеспечения заданных показателей качества и точности переходного процесса, а также выполнения требований по запасам устойчивости необходимо введение в систему линейного регулятора.
Очевидно, что статическую ошибку данной системы не получится устранить введением только регулятора, в связи с очень большим коэффициентом передачи датчика обратной связи. Необходимо, ввести последовательно с датчиком обратной связи звено, которое обеспечивало бы, коэффициент передачи по цепи обратной связи равный 1, т.е. установить нормирующий преобразователь с передаточной функцией:
, где .
Необходимым условием надежной устойчивой работы АСР является правильный выбор типа регулятора и его настроек, гарантирующий требуемое качество регулирования.
В зависимости от свойств объектов управления, определяемых его передаточной функцией и параметрами, и предполагаемого вида переходного процесса выбирается тип и настройка линейных регуляторов.
Основные области применения линейных регуляторов определяются с учетом следующих рекомендаций:
И - регулятор со статическим ОР - при медленных изменениях возмущений и малом времени запаздывания (ф/Т<0.1);
П - регулятор со статическим и астатическим ОР - при любой инерционности и времени запаздывания, определяемом соотношением ф/Т<0.1;
ПИ - регулятор - при любой инерционности и времени запаздывания ОР, определяемом соотношением ф/Т<1;
ПИД - регуляторы при условии ф/Т<1 и малой колебательности исходных процессов.
Исходя из выше изложенных рекомендаций и учитывая применительно к нашей системе ф/Т=0.74, становится очевидно, что применение П- или И- регулятора с данным объектом не рекомендуется.
ПИ и ПИД регуляторы могут быть вполне применены. Исходя из соображений простоты конструкции, в данной курсовой работе сначала рассмотрим возможность использования в данной АСР ПИ- регулятора, в случае если с ним система не будет выполнять заданные показатели качества, точности и устойчивости, тогда будет рассмотрена возможность в применении регулятора с ПИД законом регулирования.
- Введение
- 1. Технологический раздел
- 1.1 Описание технологического процесса
- 1.2 Обоснование необходимости автоматизированного контроля и управления
- 1.3 Требования к автоматизированным системам контроля и управления
- 2. Раздел автоматизации
- 2.1 Идентификация объекта автоматизации
- 2.2 Обоснование выбора типа регулятора
- 2.3 Оптимизация параметров настройки ПИ - регулятора
- 2.4 Анализ устойчивости и качества системы управления
- Заключение
- Общее устройство и принцип действий чесальных машин
- Формирование ленты на чесальной машине
- Назначение чесальных машин
- 7. Чесальная машина с-51 с регулятором скорости потока волокон
- 6. Система Аеrofeed а70 питания группы чесальных машин
- Валичная чесальная машина
- Общие вопросы конструирования чесальных машин
- 1.1). Понятие чесальных машин.
- 1.2)Наличные чесальные машины.