1.4.3. Расчет длины слоя адсорбента
Требуемую длину движущегося слоя адсорбента определяют через число единиц переноса по уравнению массопередачи
где S – площадь поперечного сечения слоя, м2; К – объемный коэффициент массопередачи, с –1; – высота, эквивалентная единице переноса, м; – число единиц переноса.
Объемный коэффициент массопередачи определяем из соотношения
где – объемный коэффициент массоотдачи в газовой фазе, с –1; – объемный коэффициент массоотдачи в твердой фазе, с –1; т – коэффициент распределения.
Поскольку коэффициент распределения очень мал, то величиной можно пренебречь. Тогда . Для расчета объемного коэффициента массоотдачи газовой фазы необходимо определить число Рейнольдса для зернистого слоя [2]:
где w – скорость газовой фазы, м/с; а – удельная поверхность зернистого слоя, м2/м3.
Удельную поверхность для зернистого слоя адсорбента находим из соотношения [2, с. 102]:
(1.14)
Фактор формы Ф для промышленных гранулированных активных углей и силикагелей лежит в пределах Ф = 0,7–0,9 [12]. Выбрав Ф = 0,8, найдем а:
м²/м³.
Тогда число Рейнольдса равно:
При Re > 30 для расчета используют соотношение [2, с. 572]:
(1.15)
где
Находим значение из выражения [2, с. 572]:
Коэффициент диффузии бензола в воздухе ( м2/с) взят из справочных таблиц [14].
Рассчитываем значение Nu':
Значение эквивалентного диаметра для зернистого слоя находим по соотношению [2]:
м.
Определяем :
Принимаем
Число единиц переноса находим методом графического интегрирования. Для этого задаемся рядом значений y в интервале от ун до ук. Для каждого значения у находим соответствующее значение х на рабочей линии, а для каждого х – значение у* на равновесной линии, пользуясь рисунком 1.6.
Рис. 1.6. Рабочая (АВ) и равновесная (ОС) линии процесса адсорбции бензола из воздуха на активном угле марки АР-А
Строим график зависимости от у (рис. 1.7). Площадь под кривой, ограниченная ординатами = 0,030 кг/м3 и ук = 0,001 кг/м3, равна f = 2020 мм2. Находим масштабы по осям: = 10 по оси и М2 = 0,0002 по оси у. Число находим по уравнению [2, с. 415]:
Определяем требуемую длину движущегося слоя адсорбента:
м.
Рис. 1.7. Определение числа единиц переноса методом графического интегрирован
При таком соотношении диаметра аппарата и высоты движущегося слоя возможен проскок адсорбтива вследствие колебаний скорости потока, особенно скорости движения слоя, обеспечиваемой разгрузочными и загрузочными устройствами. Исходя из этого, принимаем = 0,2 м.
Загрузочные и разгрузочные устройства адсорберов с движущимся слоем поглотителя весьма громоздки и сложны (рис. 1.18 и 1.20), однако от них зависит скорость и равномерность движения слоя адсорбента. Приняв высоту установки загрузочного устройства 0,8 м, а для разгрузочного – 1 м, получим высоту адсорбера
м.
Расход адсорбента определим из уравнения
Методики расчета аппаратуры, входящей в технологические схемы адсорбционных установок (газовых холодильников, калориферов и т. д.), подбора вентиляторов и другого вспомогательного оборудования (емкости, конденсатоотводчики и др.), а также расчета гидравлического сопротивления зернистых слоев изложены в соответствующих разделах данной книги.
Специфическим требованием для вспомогательного оборудования является его взрывобезопасное исполнение. Вентиляторы, например, должны иметь герметичный корпус во избежание утечек растворителя, исключения возможности попадания в него твердых частиц, способных вызвать искрение.
Корпус вентилятора из этих соображений часто футеруют цветными металлами (медь, латунь). Иногда вентиляторы и электродвигатели к ним устанавливают в смежных помещениях, пропуская вал вентилятора в сальнике через стену.
Из тех же соображений взрывобезопасности в схеме адсорбционных установок предусматриваются огнепреградители и предохранители-компенсаторы.
Огнепреградители предназначены для предотвращения распространения пламени в случае возгорания паровоздушной смеси. Принцип их действия заключается в поглощении выделяющегося при горении тепла, различными насадками (металлические сетки, фарфоровые шарики, гравий, другие теплоемкие элементы). Чаще всего используются гравийные огнепреградители, конструкции и характеристики которых приведены в литературе [3, с. 107]. Размер частиц гравия 3,5 х 3,5 мм, толщина слоя 70–80 мм.
Предохранители-компенсаторы служат для предотвращения разрушений адсорбционной установки при возникновении взрыва. Они представляют собой участки трубопровода, снабженные мембранами из тонколистовой меди, латуни, алюминия. Толщина мембраны 0,1–0,2 мм [6, с. 168].
- О. С. Ломова расчет массообменных установок нефтехимической промышленности
- Часть 2
- Рецензенты: е. О. Захарова, к.Т.Н., доцент ОмГпу, зав. Кафедрой «Технологии и методики преподавания технологии»;
- Оглавление
- Глава 1. Адсорбционная установка
- Глава 2. Расчет сушильной установки
- Введение
- Глава 1. Адсорбционная установка
- 1.1. Процесс адсорбции
- 1.2. Расчет адсорбционной установки с псевдоожиженным слоем адсорбента
- Задание на проектирование
- Основные условные обозначения
- 1.2.1. Определение скорости газового потока
- 1.2.2. Определение расхода адсорбента
- 1.2.3. Определение объемного коэффициента массопередачи
- 1.2.4. Определение общего числа единиц переноса
- 1.3. Расчет адсорбционной установки периодического действия с неподвижным слоем адсорбента
- Задание на проектирование
- 1.3.1. Построение изотермы адсорбции
- 1.3.2. Определение продолжительности стадии адсорбции
- 1.4. Расчет адсорбционной установки с движущимся слоем адсорбента Задание на проектирование
- 1.4.1. Расчет диаметра аппарата
- 1.4.2. Расчет скорости движения адсорбента
- 1.4.3. Расчет длины слоя адсорбента
- 1.5. Расчет ионообменной установки
- Задание на проектирование
- 1.4.1. Расчет односекционной катионообменной колонны
- Уравнение изотермы сорбции
- Скорость потока жидкости
- Определение лимитирующего диффузионного сопротивления
- Среднее время пребывания частиц ионита в аппарате
- Высота псевдоожиженного слоя ионита
- 1.6 Характеристики адсорберов
- 1.6.1. Адсорберы с неподвижным слоем поглотителя
- 1.6.2. Адсорберы с движущимся слоем поглотителя
- 1.6.3. Адсорберы с псевдоожиженным слоем поглотителя
- Глава 2. Расчет сушильной установки
- 2.1. Процесс сушки
- Основные условные обозначения
- Индексы
- 2.2. Расчет барабанной сушилки Задание на проектирование
- 2.2.1. Параметры топочных газов, подаваемых в сушилку
- 2.2.2. Параметры отработанных газов. Расход сушильного агента
- 2.2.3. Определение основных размеров сушильного барабана
- К выбору рабочей скорости газов в сушильном барабане w
- Опытные данные по сушке некоторых материалов в барабанных сушилках
- Основные характеристики барабанных сушилок заводов «Уралхиммаш» и «Прогресс»
- 2.3. Расчет сушилки с псевдоожиженным слоем Задание на проектирование
- 2.3.1. Расход воздуха, скорость газов и диаметр сушилки
- 2.3.2. Высота псевдоожиженного слоя
- 2.3.3. Гидравлическое сопротивление сушилки
- Список используемой литературы
- Приложения
- Физические свойства воды (на линии насыщения)
- Физические свойства сухого воздуха при атмосферном давлении