2. Расчет конструкций по предельным состояниям
Под предельным состоянием конструкции понимают такое ее состояние, при котором она теряет способность сопротивляться внешним нагрузкам и воздействиям или перестает удовлетворять предъявляемым к ней эксплуатационным требованиям. Различают две группы предельных состояний.
Первая группа предельных состояний необходима для обеспечения требований несущей способности конструкций - прочности, устойчивости и выносливости.
Вторая группа предельных состояний накладывает ограничения по развитию чрезмерных эксплуатационных деформаций от статических и динамических нагрузок, при которых в конструкции, сохраняющей прочность и устойчивость, появляются необратимые деформации или такие амплитуды колебаний, при которых конструкция перестает удовлетворять предъявляемым к ней эксплуатационным требованиям.
Также ко второй группе предельных состояний относятся ограничения по образованию и развитию трещин. В этом случае в конструкции, сохраняющей прочность, появляются трещины таких размеров, при которых дальнейшая эксплуатация сооружений становится невозможной. Например, в результате чрезмерного раскрытия берегов трещины нарушается герметичность трубопроводов и резервуаров, появляются течи.
В соответствии с первым предельным состоянием несущая способность конструкции будет обеспечена при выполнении следующего условия
, (2.1)
где N – расчетное усилие, определяемое при наиболее тяжелой комбинации расчетных нагрузок и воздействий;
- наименьшая возможная несущая способность поперечных сечений элементов конструкций, подвергаемых нагружению.
Расчетное усилие вычисляется от суммы всех нагрузок
, (2.2)
где – нормативные усилия;
– коэффициент надежности по нагрузке, который учитывает возможность отклонения фактических нагрузок от их нормативных значений.
Расчетные усилия в курсе сопротивления материалов принято называть внутренними силовыми факторами или интегральными характеристиками напряжений. Они возникают в сечениях отдельных элементов строительных конструкций и зависят от характера и величины внешних нагрузок и воздействий. Если внешние силы сжимают или растягивают строительный элемент, то в его поперечных сечениях возникают продольные силы, если изгибают, то в поперечных сечениях необходимо искать изгибающий момент. Для определения нормативных усилий, как правило, используют метод сечений, подробно рассмотренный в курсе сопротивления материалов.
Несущая способность элементов строительных конструкций зависит от прочностных характеристик применяемых материалов и от выбранных размеров и формы поперечных сечений, т.е. от геометрических характеристик. В общем виде несущая способность конструкции может быть выражена в виде функции
, (2.3)
где – расчетное сопротивление материала;
– геометрические характеристики поперечных сечений (площадь при растяжении или сжатии, момент сопротивления при изгибе).
Студентам, изучившим курс сопротивления материалов, будет понятен такой пример оценки несущей способности элементов строительных конструкций
, (2.4)
где - максимальные нормальные напряжения в поперечном сечении стержня при растяжении сжатии или
- максимальные нормальные напряжения при изгибе стержня.
В этих выражениях продольная сила и изгибающий момент это внутренние силы, возникающие в поперечных сечениях стержней и зависящие от величины и характера приложения внешних нагрузок и воздействий. Они также являются интегральными характеристиками напряжений в поперечных сечениях стержней. Площадь поперечного сечения стержня и момент сопротивления это геометрические характеристики, которые зависят формы и размеров поперечного сечения стержня. Для простых сечений геометрические характеристики вычисляются по известным формулам, либо выбираются по таблицам для стандартных прокатных профилей.
При расчете строительных конструкций необходимо отличать нормативное сопротивление материалов и расчетное сопротивление материалов . Нормативное сопротивление материала отражает его механические свойства и, в первую очередь, зависит от технологии и качества производства материала. Строительные нормы устанавливают порядок назначения нормативного сопротивления на партию произведенного материала с учетом статистического характера его контроля и отбраковки. За нормативное сопротивление стали, например, принимаются предел текучести т или предел прочности , установленные соответствующими стандартами.
Расчетное сопротивление материала определяется делением нормативного сопротивления на коэффициенты надежности по назначению и по материалу и умножением на коэффициент условий работы , который учитывает условия работы материала, отдельных элементов, строительных конструкций и сооружений в целом
. (2.5)
Второе предельное состояние определяется величинами предельных деформаций, при превышении которых нормальная эксплуатация конструкции становится невозможной.
При расчете по второму предельному состоянию должно соблюдаться условие
, (2.6)
где – вычисленная деформация конструкции, вызванная нормативными нагрузками;
– допустимая предельная деформация (перемещение) конструкции.
Для изгибаемых балок или пластинок вычисляют прогибы и углы поворота поперечных сечений, для растянутых и сжатых элементов вычисляют продольные перемещения, для оснований сооружений вычисляют величину осадки.
Предельные деформации определяются в соответствии с нормативными документами и, например, для балок предельные прогибы устанавливает СНиП 2.01.07-85 «Нагрузки и воздействия», а для оснований сооружений СНиП 2.02.01-83 «Основания зданий и сооружений».
- Вансович к.А.
- Часть 1
- 1. Требования, предъявляемые к строительным конструкциям
- 2. Расчет конструкций по предельным состояниям
- 3. Нагрузки и воздействия.
- 4. Стальные конструкции
- 6. Сортамент строительных сталей.
- 6.1. Сталь листовая.
- 6.2. Профильная сталь.
- 6.4. Гнутые профили.
- 7. Сварные соединения строительных конструкций.
- 7.1. Технология сварки.
- 7.2. Типы сварных швов и соединений.
- Расчет сварных соединений.
- 7.3.1. Расчет стыковых швов при действии осевой нагрузки.
- 7.3.2. Расчет угловых швов при действии осевой силы.
- Расчет угловых швов при прикреплении уголков.
- 7.3.4. Расчет угловых швов при действии изгибающего момента и поперечной силы.
- 8. Расчет магистральных трубопроводов на прочность.
- 8.1. Нагрузки и воздействия, принимаемые при расчете трубопроводов.
- 8.1.1. Постоянные нагрузки на магистральный трубопровод.
- Временные длительные нагрузки и воздействия.
- 8.1.3. Кратковременные нагрузки.
- Особые нагрузки.
- 8.2.1. Определение напряжений в стенке трубопровода.
- 8.2.2. Выбор толщины стенки магистрального трубопровода.
- 8.2.3. Проверка прочности трубопровода.
- 9.1. Деформации в прямых стержнях при растяжении – сжатии.
- 9.2. Сопротивление грунта продольным перемещениям трубы.
- 9.3. Определение продольного перемещения свободного конца трубы на участке подземного трубопровода.
- 9.3.1. Определение продольных перемещений подземного трубопровода при отсутствии участка предельного равновесия грунта.
- 9.4. Определение перемещений в месте выхода подземного участка трубопровода на поверхность.
- 9.4.1. Определение продольных перемещений трубопровода в месте его сопряжения с компенсатором.
- 10. Расчет компенсатора на жесткость и прочность.
- 10.1. Метод определения податливости конструкции.
- 10.2. Определение податливости и жесткости п-образного компенсатора.
- 10.3. Расчет на прочность п-образного компенсатора.