Вопрос 11. Теория соответственных состояний. Коэффициент сжимаемости.
В инженерных расчетах часто пользуются уравнением состояния идеального газа с введением в него поправочного коэффициента (z), называемого коэффициентом сжимаемости
.
Коэффициент сжимаемости (z) учитывает различие между идеальным и реальными газами (для идеального газа z = 1).
Коэффициент сжимаемости является функцией давления, температуры и зависит от природы газа.
Для обобщения данных по коэффициентам сжимаемости различных газов был использован принцип «соответственных» состояний, сформулированный Ван-дер-Ваальсом. Принцип «соответственных» состояний утверждает, что критическое состояние действительно является одинаковым для всех веществ.
В критической точке для всех веществ r = 0, , , . Вещества находятся в соответственных состояниях при одинаковом удалении от критической точки.
Степень удаления от критической точки определяется с помощью приведенных параметров:
приведенного давления ; приведенной температуры ; приведенного объема
.
Уравнение состояния, записанное в виде F ( ) = 0, называется приведенным уравнением состояния. Оно не содержит индивидуальных констант вещества.
Состояния вещества, в которых они имеют одинаковые и называются соответственными. Зная параметры и по данным рис. 1.4 определяется коэффициент сжимаемости z.
12. Математическое выражение 1го начала термодинамики (+баланс рабочего тела).
Первое начало термодинамики – это количественное выражение закона сохранения и превращения энергии.
Закон сохранения и превращения энергии является универсальным законом природы и применим ко всем явлениям. Он гласит: «запас энергии изолированной системы остается неизменным при любых происходящих в системе процессах; энергия не уничтожается и не создается, а только переходит из одного вида в другой».
Это утверждение и принимается в качестве постулата первого начала термодинамики
Первое начало термодинамики как математическое выражение закона сохранения и превращения энергии:
Внутренняя энергия изолированной системы сохраняет своё постоянное значение при всех изменениях, протекающих внутри системы, то есть . Изменение внутренней энергии неизолированной системы складывается из подведённой (отведённой) теплоты и подведённой (отведённой) работы, то есть .
в интегральной форме:
- эффективная работа; - внешний теплообмен
Полученные уравнения учитывают только внешние эффекты и справедливы только для обратимых процессов.
У равнения являются математическим выражением первого начала термодинамики по внешнему балансу теплоты и работы и гласят: количество теплоты, подведенное извне, идет на изменение внутренней энергии системы и совершение работы.
В термодинамике приняты следущие знаки при определении работы и теплоты в уравнениях первого начала термодинамики: если работа выполняется телом, то она положительная; если работа подводится к телу, то она отрицательная. Если теплота сообщается телу, она имеет положительное значение; если теплота отводится от тела, она имеет отрицательное значение.
= + Первого начала термодинамики по внешнему балансу.
Работа необратимых потерь , связанная с затратами энергии на преодоление сил трения, удары и завихрения, превращается в теплоту внутреннего теплообмена ( )
= . Полное количество теплоты , полученное телом, равно сумме теплоты, подведенной извне , и теплоты внутреннего теплообмена .
; .
Уравнения (1.55) и (1.56) называются уравнениями первого начала термодинамики по балансу рабочего тела, и справедливы для реальных процессов.
Первое начало термодинамики по балансу рабочего тела: , где - полный или приведённый теплообмен.
Полное количество теплоты , полученное телом, равно сумме теплоты, подведенной извне , и теплоты внутреннего теплообмена
Первое начало термодинамики по балансу рабочего тела справедливо для любых процессов протекающих в системе.
В условиях обратимого процесса, то есть , первое начало термодинамики по балансу рабочего тела переходит в первое начало термодинамики по внешнему балансу. Для использования этого уравнения нужно уметь его интегрировать. При интегрировании получится: для необратимых процессов и для обратимых процессов.
- 1. Основные определения и понятия термодинамики
- 2. Параметры состояния и уравнения состояния.
- 3.Термодинамическая работа, координаты p-V
- 4. Потенциальная (техническая) работа
- 5. Теплоемкость. Определение теплоемкости веществ.
- Вопрос 8. Определение температуры смеси. Теплоемкость смеси
- Вопрос 9. Термодинамические условия фазовых переходов.
- Вопрос 10. Критические параметры чистого вещества и смесей.
- Вопрос 11. Теория соответственных состояний. Коэффициент сжимаемости.
- 13. Аналитическое выражение первого начала термодинамики
- 14. Первое начало термодинамики для идеального газа.
- 1 5. Принцип существования энтропии идеального газа.
- 31. Теплопроводность. Закон Фурье. Коэффициент теплопроводности
- 32. Дифференциальное уравнение теплопроводности. Условия однозначности
- 39. Теплообмен излучением. Основные законы.
- 40. Теплообмен излучением между телами.
- 42. Сложный теплообмен (теплопередача)
- 43. Теплопередача. Основное уравнение теплопередачи. Коэффициент теплопередачи.
- 44. Теплопередача через плоскую однослойную и многослойную плоскую стенку
- 45. Теплопередача через криволинейные однослойные и многослойные стенки.
- 48. Теплопередача при переменных температурах. Средняя разность температур.
- 49. Тепловой баланс теплообменного аппарата и частные случаи.
- 50.Средняя разность температур для сложных схем теплообмена
- 51.Обобщенные уравнения теплопередачи при переменных температурах
- 52. Расчет теплообменный аппаратов первого рода.
- 53. Расчет теплообменный аппаратов второго рода.
- 54. Круговые процессы. Кпд и холодильный коэффициент.
- 55. Обратимый цикл Карно.
- 56. Математическое выражение второго начала термостатики. Основные следствия.
- 57. Математическое выражение второго начала термодинамики. Основные следствия.
- 58. Истечение жидкостей и газов. Основные расчётные соотношения.
- 59.Особенности истечения сжимаемой жидкости. Кризис истечения. Режимы истечения.
- 60.Переход через критическую скорость (сопло Лаваля).
- 61. Особенности истечения через каналы переменного сечения, сопло и диффузор.
- 62. Дросселирование. Эффект Джоуля-Томсона. Основные понятия
- 63. Процессы парообразования, определение параметров насушенного пара, диаграмма h-s.
- 64.Классификация гту:
- 72. Паросиловые установки, цикл Ренкина, методы повышения кпд.
- 73.Схема,рабочий процесс и цикл паросиловой установки с промежуточным перегревом
- 74.Схема,рабочий процесс и цикл паросиловой установки с регенерацией
- 76.Рабочий процесс парокомпрессионной холодильной установки:
- 77. Воздушные холодильные машины.
- 78.Абсорбционная холодильная установка
- 79.Схема,рабочий процесс и цикл теплового насоса
- 82. Индикаторные и эффективные характеристики двигателей внутреннего сгорания