27.Твердые сплавы.
Применение методов порошковой металлургии в начале 1920-х годов в Германии привело к созданию новых материалов, обладающих уникальным сочетанием свойств, – твердых сплавов. Внимание исследователей привлекли соединения некоторых металлов с углеродом: карбиды вольфрама, титана, тантала, ниобия, обладающие высокими твердостью и температурой плавления.
Карбид вольфрама WC имеет гексагональную решетку и по свойствам значительно ближе к металлам, чем к керамике: обладает хорошей электро- и теплопроводностью, имеет металлический вид. Другие карбиды, представленные в таблице 14.1, имеют кубическую кристаллическую решетку.
Карбид вольфрама смешивался с тонко размельченным порошком металла из подгруппы железа (железом, никелем или кобальтом). Смесь порошков спрессовывалась в компактную массу, которая спекалась в водороде при температуре 1300 °С. В результате был получен материал, состоящий из высокодисперсных зерен WC, связанных или «сцементированных» более вязким металлом. Позже было установлено, что наиболее эффективным металлом для связки является кобальт. Полученные материалы обладают уникальным сочетанием свойств, что и привело к выделению их во вторую основную группу инструментальных материалов – группу твердых сплавов.
Современные порошковые (спеченные) твердые сплавы – это композиции, состоящие из твердых, тугоплавких соединений (карбиды и карбонитриды титана, вольфрама, тантала и др.) в сочетании с цементирующей (связующей) составляющей (кобальт, никель, молибден и др.). Твердые сплавы, применяемые для оснащения режущего инструмента, по составу и областям применения можно разделить на четыре группы: вольфрамокобальтовые ВК (WC–Со), титановольфрамовые ТК (WC–TiC–Co), титанотанталовольфрамовые ТТК (WC–TiC–TaC–Co), безвольфрамовые БВТС (на основе TiС, TiCN с различными связками).
Общее количество твердосплавного инструмента, применяемого в механообрабатывающем производстве, составляет до 28–30 %, но этим инструментом снимается до 65 % стружки, т. к. производительность обработки твердосплавными инструментами в три – пять раз выше, чем быстрорежущими.
|
|
Твердые сплавы имеют высокую твердость при комнатной температуре. При повышении температуры твердость твердых сплавов снижается, но остается все же значительно выше, чем у быстрорежущей стали (рис. 14.1). Твердые сплавы характеризуются высокими значениями модуля упругости (E = 500–700 ГПа) и предела прочности при сжатии (s–В = 6 ГПа). Вместе с тем они имеют относительно невысокую прочность при изгибе (sИ = 1–2,5 ГПа) и меньшую, чем у быстрорежущих сталей, ударную вязкость.
Указанные физико-механические свойства обеспечивают твердосплавному инструменту высокий предел пластической прочности, повышенную сопротивляемость адгезионно-усталостному, химико-окислительному, диффузионному и абразивному изнашиванию. Такие свойства позволили существенно повысить производительность обработки сталей, чугунов, цветных сплавов и труднообрабатываемых материалов по сравнению с обработкой быстрорежущим инструментом.
Для оснащения режущего инструмента применяются вольфрамокобальтовые твердые сплавы с содержанием кобальта от 3 до 10 % (ВК3, ВК6, ВК6–М, ВК8, ВК10–ХОМ и др.).
Вольфрамокобальтовые сплавы наиболее эффективны преимущественно при обработке чугунов, цветных металлов, стеклопластиков, фарфора, труднообрабатываемых материалов (коррозионностойких, высокопрочных сталей, жаропрочных сплавов на основе никеля и титана и т. д.), т. е. материалов, дающих, как правило, дискретные типы стружек (элементная, стружка надлома).
Сплав ВКЗ с минимальным содержанием кобальта, как наиболее износостойкий, но наименее прочный, рекомендуют для чистовой обработки с повышенной скоростью резания и уменьшенной толщиной срезаемого слоя, а сплав ВК8 – для черновой обработки с пониженной скоростью резания и увеличенным сечением среза в условиях ударных нагрузок.
Титановольфрамовые сплавы (ТК) по сравнению со сплавами ВК обладают большей стойкостью против окисления, твердостью и теплостойкостью, но в то же время имеют меньшую теплопроводность и электропроводность, а также меньший модуль упругости.
Сплавы группы ТК стандартных марок имеют различный состав в зависимости от условий из применения. Содержание карбида титана колеблется в пределах 5–30 %, кобальта от 4 до 10 % (ТЗОК4, Т15К6, Т14К8, Т5К10).
К группе танталосодержащих сплавов следует отнести и так называемые сплавы МС, выпуск которых освоен по лицензии, закупленной у фирмы "Sandvik Coromant" (Швеция).
Исследования режущих свойств сплавов МС показали их высокую надежность по сравнению со стандартными сплавами, что связано с повышенной стабильностью их физико-механических характеристик. Поэтому более высокая (на 40–60 %) стоимость сплавов МС по сравнению со стандартными сплавами вполне оправдана высокой стабильностью режущих свойств и эксплуатационной надежностью инструмента, оснащенного пластинами МС.
В связи с высокой дефицитностью основных компонентных составляющих твердого сплава и, прежде всего, W и Со, в развитых странах мира и СНГ развернуты широкие изыскания по разработке экономно-легированных твердых сплавов, обычно не содержащих или содержащих в небольших количествах вольфрам; такие твердые сплавы получили наименование безвольфрамовых. Перспективным направлением оказалось создание сплавов на основе карбидов или карбидонитридов титана с никельмолибденовой связкой (например, ТН20, КНТ16). Сплав ТН20 содержит 15 % Ni и 6 % Mo, остальное – TiC, а КНТ16 – 19,5 % Ni и 6,5 % Mo, остальное – TiCN.
Сплавы отличаются высокой твердостью, окалиностойкостью, имеют низкий коэффициент трения по стали и пониженную склонность к адгезионному взаимодействию, что уменьшает износ инструмента, особенно по передней поверхности, позволяет получить при обработке сталей низкую шероховатость обработанной поверхности и высокую размерную точность. Вместе с тем, безвольфрамовые твердые сплавы по сравнению со стандартными вольфрамосодержащими сплавами имеют более низкий модуль упругости, меньшую теплопроводность и ударную вязкость, поэтому хуже сопротивляются ударным и тепловым нагрузкам, упругим и пластическим деформациям, имеют пониженную жаропрочность, более интенсивно разупрочняются при повышенных температурах.
Указанные свойства определяют и области рационального применения безвольфрамовых твердых сплавов при обработке материалов резанием. В настоящее время их рекомендуется использовать, главным образом, для чистовой и получистовой обработки (точение, фрезерование) углеродистых и легированных сталей с высокой скоростью резания и относительно небольшим сечением среза взамен титановольфрамовых сплавов.
Эффективно применение безвольфрамовых твердых сплавов в виде сменных многогранных пластин, так как при напайке и заточке из-за низкой теплопроводности возможно появление внутренних напряжений и, как следствие, трещин на пластинах, а также снижение их эксплуатационной стойкости.
- Подготовка к экзамену по матведу. Оглавление
- 1.Атомно-кристаллическая структура металлов. Анизотропия. Полиморфизм.
- 2.Идеальное и реальное строение кристаллов. Дефекты кристаллического строения. Теоретическая и реальная прочность металлов. Пути повышения прочности металлов.
- 3.Сплавы:твердые растворы, механические смеси, химические соединения. Алгоритм расшифровки диаграмм состояния двойных сплавов. Основные типы диаграмм состояния двойных сплавов и их расшифровка.
- 6.Предварительная термическая обработка углеродистых сталей. Нормализация, отжиг стали. Виды брака. Перегрев, пережег : влияние на механические свойства стали. Способы устранения брака.
- 7.Диаграмма изотермического распада аустенита.(с-образная кривая).Критическая скорость закалки. Структуры, образующиеся в стали при охлаждении со скоростью, меньше критической.
- 8. Виды отпуска углеродистых сталей, их назначение и образующиеся структуры. Сравнение образовавшихся структур.
- 9.Термическая обработка углеродистых конструкционных сталей(изделия типа вал, шестерня).
- 10.Термическая обработка углеродистых инструментальных сталей.
- 11.Термические и структурные напряжения, возникающие в изделии при термической обработке. Способы их предотвращения или устранения. Способы закалки стали.
- 12.Влияние содержания углерода на свойства стали в отожженном и закаленном состояниях.
- 13. Основной эффект легирования сталей и сплавов металлическими элементами.
- 14.Маркировка легированных сталей и сплавов.
- 15.Прокаливаемость сталей и сплавов. Критический диаметр. Влияние легирования на Dкр.
- 16.Классификация легированных сталей по структуре. Классы легированных сталей.
- 17. Конструкционные легированные стали. Термическая обработка низколегированных конструкционных сталей(вал, пружина).
- 18. Дефекты легированных сталей перлитного класса.
- 19. Защита сталей и сплавов от коррозии легированием. Межкристаллическая коррозия и способы борьбы с ней.
- 20. Влияние пластической деформации на механические свойства сталей. Наклеп и рекристаллизация. Критическая степень наклепа.
- 21. Поверхностное упрочнение деталей машин наклепом.
- 22. Поверхностное упрочнение деталей машин закалкой с разогревом поверхности токами высокой частоты. Интервал возможной твердости.
- 25. Азотирование сталей. Предельная получаемая твердость. Особенности поверхностного слоя.
- 26.Подшипниковые сплавы. Стали для подшипников качения. Маркировка. Термообработка. Сплавы для подшипников скольжения. Строение, свойства, применение.
- 27.Твердые сплавы.
- 28. Теплостойкость инструментальных сталей и сплавов.
- 29. Усталость металлов. Особенности усталостного разрушения. Предел усталости( выносливости). Способы повышения усталостной прочности.
- 30. Алюминевые сплавы литейные и деформируемые. Особенности термической обработки деформируемых сплавов.
- 31. Чугуны. Влияние строения чугунов на свойства (серые, ковкие, высокопрочные). Маркировка чугунов. Область применения.