11.Термические и структурные напряжения, возникающие в изделии при термической обработке. Способы их предотвращения или устранения. Способы закалки стали.
К наиболее распространенным порокам, возникающим в стали при термической обработке, относятся обезуглероживание, пережог, перегрев, коробление, трещины и др.
Обезуглероживание — выгорание углерода из поверхностных слоев изделия в процессе нагрева их под закалку в печах с окислительной атмосферой. Обезуглероживание приводит к ухудшению механических свойств поверхностного слоя детали. Для предотвращения обезуглероживания (а также и окалинообразования) при термической обработке нагрев деталей производится в печах с восстановительной и нейтральной атмосферой или в расплавленных металлических и соляных ваннах.
Перегрев связан с интенсивным ростом зерна аустенита при высоких температурах нагрева или длительной выдержке в печи при нормальной температуре нагрева. При закалке это приводит к возникновению повышенной хрупкости. Перегретая сталь может быть исправлена последующей термической обработкой по нормальному режиму.
Пережог — окисление стали по границам зерен при высоких температурах нагрева в условиях окислительной среды. Пережженная сталь не может быть исправлена последующей термической обработкой.
Недостаточная твердость стали после закалки может быть связана с нагревом изделия из доэвтектоидной стали ниже точки АС3,. или недостаточной выдержкой при нормальной закалочной температуре. В том и другом случае произойдет неполная закалка стали. Пониженная твердость стали после такой закалки объясняется присутствием в структуре стали наряду с мартенситом и феррита. Пониженная твердость стали может быть вызвана также недостаточно интенсивным охлаждением; в этом случае не весь аустенит превращается в мартенсит, и в структуре стали наряду с мартенситом будут присутствовать другие закалочные структуры.
Коробление и трещины возникают под влиянием температурных и структурных внутренних напряжений. Появление температурных напряжений в стали при нагревании и охлаждении связано с неодинаковой скоростью изменения температуры по сечению, что приводит к неодновременному изменению объема отдельных участков детали. Структурные напряжения возникают при фазовых превращениях, сопровождающихся увеличением объема (особенно при превращении аустенита в мартенсит). Внутренние напряжения вызывают искажение внешней формы деталей (поводка, коробление). Если напряжения превышают предел прочности материала, то это может вызвать разрушение (трещины) деталей. Следует иметь в виду, что чем выше прокаливаемость стали, тем больше склонность к образованию трещин. С повышением содержания углерода чувствительность стали к возникновению трещин возрастает. Структурные изменения, происходящие в металле при термической обработке, вызывают изменение объема (деформацию), а неравномерность охлаждения - искажение внешней формы (коробление). Например, наибольший объем из структур имеет мартенсит, поэтому при закалке с получением мартенситной структуры будет увеличиваться объем детали. Коробление может происходить без изменения объема (под влиянием термических напряжений) и с изменением объема (под влиянием структурных напряжений). Для первого случая характерным является деформация деталей из железа после многократного нагрева ниже температуры в критической точке и охлаждения; форма деталей будет приближаться к форме шара (рис. 46, а). Для второго случая характерным является деформация стальных деталей после многократной закалки на мартенсит (рис. 46, б). У детали кубической формы грани выгибаются к центру. У цилиндрической детали длина увеличивается, а у детали в форме диска толщина уменьшается. Таким образом, форма различных деталей под влиянием структурных напряжений изменяется иначе, чем под влиянием термических напряжений.
Уменьшение коробления достигается также правильным способом погружения детали в охлаждающую жидкость, например, длинные стержневые детали необходимо охлаждать в вертикальном положении, закаливать в закалочных машинах и штампах и др. Коробление детали исправляют правкой или рихтовкой.
Способы закалки стали.
Выбор того или иного способа охлаждения при закалке определяется во-первых получением наибольшей прокаливаемости и во-вторых минимальным уровнем остаточных внутренних напряжений, чтобы уменьшить коробление деталей.
Используются несколько способов закалки, которые классифицируются по методу охлаждения:
1-закалка в одном охладителе;
2-закалка в двух охладителях;
3-ступенчатая закалка;
4-изотермическая закалка.
Все рассмотренные способы закалки показаны на диаграмме распада переохлажденного аустенита на рис.45.
Закалка в одном охладителе (воде или масле). Это наиболее простой и распространенный способ. Однако некоторые стали при охлаждении в воде склонны к возникновению трещин. При охлаждении в масле скорость охлаждения меньше, но многие стали при таком охлаждении не закаливаются (скорость охлаждения меньше Vкр и мартенсит не образуется).
Закалка в двух охладителях (через воду в масло). При этом методе в верхнем интервале температур скорость охлаждения велика, но сталь достаточно пластична и значительных напряжений не возникает. При этом способе сталь быстро охлаждается в интервале температур 750–400°С, а затем деталь переносится в другую, более мягкую, охлаждающую среду, и в мартенситном интервале охлаждение происходит замедленно, что практически исключает образование трещин. Твердость при таком методе закалки такая же, как при закалке в воде. (рис.45, кривая 2). Это приводит к уменьшению внутренних напряжений и снижает вероятность появления трещин. Примером такой закалки может быть процесс с охлаждением вначале в воде, а затем в масле.
Ступенчатая закалка -заключается в том, что после нагрева детали переносят в печь-ванну с расплавом щелочей (обычно КОН+NaOH). Нагретую до температуры немного выше начала образования мартенсита (на 20-30° выше точки Мн т.е. до 350-4000С), выдерживают небольшое время для выравнивания температуры по сечению, а затем охлаждают в масле или на воздухе (рис.45, кривая 3). При этом обеспечивается быстрое охлаждение стали в верхней области температур, а затем делается выдержка, во время которой температура по сечению детали выравнивается, и термические напряжения уменьшаются.
Твердость после такой закалки такая же, как и в предыдущих способах, но напряжения и вероятность образования трещин еще меньше. В качестве жидких сред для ступенчатой закалки используют расплавы щелочей, селитры, легкоплавких металлов.
Ступенчатая закалка применяется только для мелких изделий (до 10мм) из углеродистых сталей. Для более крупных деталей ее не применяют, так как в расплаве щелочей скорость охлаждения внутри детали мала.
Для легированных сталей, обладающих высокой устойчивостью переохлажденного аустенита, такую закалку применять нецелесообразно, так как они обычно хорошо закаливаются в масле, которое достаточно медленно охлаждает при температурах образования мартенсита.
Изотермическая закалкапроводится так же как и ступенчатая, но в расплаве щелочей детали выдерживают более длительное время (до полного распада аустенита на бейнит (рис.45,кривая 4). При этом существенных напряжений не возникает, но твердость получается ниже, чем при других способах закалки. Преимуществом этого способа является то, что после него не требуется отпуска. Изотермическая закалка обычно применяется для деталей сложной формы, склонных к деформациям и образованию трещин.
Выбор того или иного способа охлаждения при закалке определяется во-первых получением наибольшей прокаливаемости и во-вторых минимальным уровнем остаточных внутренних напряжений, чтобы уменьшить коробление деталей.
Используются несколько способов закалки, которые классифицируются по методу охлаждения:
1-закалка в одном охладителе;
2-закалка в двух охладителях;
3-ступенчатая закалка;
4-изотермическая закалка.
Все рассмотренные способы закалки показаны на диаграмме распада переохлажденного аустенита на рис.45.
Закалка в одном охладителе (воде или масле). Это наиболее простой и распространенный способ. Однако некоторые стали при охлаждении в воде склонны к возникновению трещин. При охлаждении в масле скорость охлаждения меньше, но многие стали при таком охлаждении не закаливаются (скорость охлаждения меньше Vкр и мартенсит не образуется).
Закалка в двух охладителях (через воду в масло). При этом методе в верхнем интервале температур скорость охлаждения велика, но сталь достаточно пластична и значительных напряжений не возникает. При этом способе сталь быстро охлаждается в интервале температур 750–400°С, а затем деталь переносится в другую, более мягкую, охлаждающую среду, и в мартенситном интервале охлаждение происходит замедленно, что практически исключает образование трещин. Твердость при таком методе закалки такая же, как при закалке в воде. (рис.45, кривая 2). Это приводит к уменьшению внутренних напряжений и снижает вероятность появления трещин. Примером такой закалки может быть процесс с охлаждением вначале в воде, а затем в масле.
Ступенчатая закалка -заключается в том, что после нагрева детали переносят в печь-ванну с расплавом щелочей (обычно КОН+NaOH). Нагретую до температуры немного выше начала образования мартенсита (на 20-30° выше точки Мн т.е. до 350-4000С), выдерживают небольшое время для выравнивания температуры по сечению, а затем охлаждают в масле или на воздухе (рис.45, кривая 3). При этом обеспечивается быстрое охлаждение стали в верхней области температур, а затем делается выдержка, во время которой температура по сечению детали выравнивается, и термические напряжения уменьшаются.
Твердость после такой закалки такая же, как и в предыдущих способах, но напряжения и вероятность образования трещин еще меньше. В качестве жидких сред для ступенчатой закалки используют расплавы щелочей, селитры, легкоплавких металлов.
Ступенчатая закалка применяется только для мелких изделий (до 10мм) из углеродистых сталей. Для более крупных деталей ее не применяют, так как в расплаве щелочей скорость охлаждения внутри детали мала.
Для легированных сталей, обладающих высокой устойчивостью переохлажденного аустенита, такую закалку применять нецелесообразно, так как они обычно хорошо закаливаются в масле, которое достаточно медленно охлаждает при температурах образования мартенсита.
Изотермическая закалка проводится так же как и ступенчатая, но в расплаве щелочей детали выдерживают более длительное время (до полного распада аустенита на бейнит (рис.45,кривая 4). При этом существенных напряжений не возникает, но твердость получается ниже, чем при других способах закалки. Преимуществом этого способа является то, что после него не требуется отпуска. Изотермическая закалка обычно применяется для деталей сложной формы, склонных к деформациям и образованию трещин.
- Подготовка к экзамену по матведу. Оглавление
- 1.Атомно-кристаллическая структура металлов. Анизотропия. Полиморфизм.
- 2.Идеальное и реальное строение кристаллов. Дефекты кристаллического строения. Теоретическая и реальная прочность металлов. Пути повышения прочности металлов.
- 3.Сплавы:твердые растворы, механические смеси, химические соединения. Алгоритм расшифровки диаграмм состояния двойных сплавов. Основные типы диаграмм состояния двойных сплавов и их расшифровка.
- 6.Предварительная термическая обработка углеродистых сталей. Нормализация, отжиг стали. Виды брака. Перегрев, пережег : влияние на механические свойства стали. Способы устранения брака.
- 7.Диаграмма изотермического распада аустенита.(с-образная кривая).Критическая скорость закалки. Структуры, образующиеся в стали при охлаждении со скоростью, меньше критической.
- 8. Виды отпуска углеродистых сталей, их назначение и образующиеся структуры. Сравнение образовавшихся структур.
- 9.Термическая обработка углеродистых конструкционных сталей(изделия типа вал, шестерня).
- 10.Термическая обработка углеродистых инструментальных сталей.
- 11.Термические и структурные напряжения, возникающие в изделии при термической обработке. Способы их предотвращения или устранения. Способы закалки стали.
- 12.Влияние содержания углерода на свойства стали в отожженном и закаленном состояниях.
- 13. Основной эффект легирования сталей и сплавов металлическими элементами.
- 14.Маркировка легированных сталей и сплавов.
- 15.Прокаливаемость сталей и сплавов. Критический диаметр. Влияние легирования на Dкр.
- 16.Классификация легированных сталей по структуре. Классы легированных сталей.
- 17. Конструкционные легированные стали. Термическая обработка низколегированных конструкционных сталей(вал, пружина).
- 18. Дефекты легированных сталей перлитного класса.
- 19. Защита сталей и сплавов от коррозии легированием. Межкристаллическая коррозия и способы борьбы с ней.
- 20. Влияние пластической деформации на механические свойства сталей. Наклеп и рекристаллизация. Критическая степень наклепа.
- 21. Поверхностное упрочнение деталей машин наклепом.
- 22. Поверхностное упрочнение деталей машин закалкой с разогревом поверхности токами высокой частоты. Интервал возможной твердости.
- 25. Азотирование сталей. Предельная получаемая твердость. Особенности поверхностного слоя.
- 26.Подшипниковые сплавы. Стали для подшипников качения. Маркировка. Термообработка. Сплавы для подшипников скольжения. Строение, свойства, применение.
- 27.Твердые сплавы.
- 28. Теплостойкость инструментальных сталей и сплавов.
- 29. Усталость металлов. Особенности усталостного разрушения. Предел усталости( выносливости). Способы повышения усталостной прочности.
- 30. Алюминевые сплавы литейные и деформируемые. Особенности термической обработки деформируемых сплавов.
- 31. Чугуны. Влияние строения чугунов на свойства (серые, ковкие, высокопрочные). Маркировка чугунов. Область применения.