Кривые охлаждения металла
При большом объеме жидкого металла выделяющаяся при кристаллизации теплота повышает температуру практически до равновесной (кривая а); при малом объеме металла выделяющейся теплоты недостаточно, вследствие чего кристаллизация происходит с переохлаждением по сравнению с равновесной температурой (кривая б).
Разница между равновесной (Ts) и реальной (Тn) температурой кристаллизации называется степенью переохлаждения ΔT. Степень переохлаждения зависит от природы металла. Она увеличивается с повышением чистоты металла и с ростом скорости охлаждения. Обычная степень переохлаждения металлов при кристаллизации в производственных условиях колеблется от 10 до 30 °С; при больших скоростях охлаждения она может достигать сотен градусов.
Степень перегрева при плавлении металлов, как правило, не превышает нескольких градусов.
В жидком состоянии атомы вещества вследствие теплового движения перемещаются беспорядочно. В то же время в жидкости имеются группировки атомов небольшого объема, в пределах которых расположение атомов вещества во многом аналогично их расположению в решетке кристалла. Эти группировки неустойчивы, они рассасываются и вновь появляются в жидкости. При переохлаждении жидкости некоторые из них, наиболее крупные, становятся устойчивыми и способными к росту. Эти устойчивые группировки атомов называют центрами кристаллизации (зародышами). Образованию зародышей способствуют флуктуации энергии, т. е. отклонения энергии группировок атомов в отдельных зонах жидкого металла от некоторого среднего значения. Размер образовавшегося зародыша зависит от величины зоны флуктуации.
Появление центров изменяет термодинамический потенциал системы ΔGобщ. С одной стороны, при переходе жидкости в кристаллическое состояние термодинамический потенциал уменьшается на VΔGυ (G1), с другой стороны, он увеличивается вследствие появления поверхности раздела между жидкостью и кристаллическим зародышем на величину, равную Sσ (G2):
ΔGобщ. = - VΔGυ + Sσ
Изменение термодинамического потенциала при образовании зародышей в зависимости от их размера
Если принять, что зародыш имеет форму куба с ребром А, то общее изменение термодинамического потенциала
ΔGобщ. = A3ΔGυ + 6A2 σ
Отсюда следует, что графическая зависимость изменения термодинамического потенциала от размера зародыша имеет максимум при некотором значении А, названном критическим. Зародыши с размером больше критического вызывают уменьшение ΔGобщ. и поэтому являются устойчивыми, способными к росту. Зародыши, имеющие размер меньше критического, нестабильны и растворяются в жидкости, поскольку вызывают увеличение ΔGобщ.
=> =>
Скорость процесса и окончательный размер кристаллов при затвердевании определяются соотношением скоростей роста кристаллов и образования центров кристаллизации. Скорость образования зародышей измеряется числом зародышей, образующихся в единицу времени в единице объема; скорость роста - увеличением линейного размера растущего кристалла в единицу времени. Оба процесса связаны с перемещениями атомов и зависят от температуры. Графическая зависимость скорости образования зародышей и скорости их роста от степени переохлаждения представлена на рисунке.
- Министерство образования рф
- Лекция 1 Заполнение зон электронами. Проводники, диэлектрики и полупроводники
- Собственные полупроводники
- Примесные полупроводники
- Лекция 2 Принципы работы полупроводниковых приборов и их применение Диоды
- Прямое включение: Обратное включение:
- Стабилитроны
- Варикапы
- Светодиоды
- Фоторезисторы
- Люкс-амперная характеристика фоторезистора Фотоэлементы с p-n-переходом
- Фотодиоды
- Упрощенная структура фотодиода и его условное графическое обозначение
- Термоэлектрогенераторы и термоэлектрохолодильники
- Эффект Холла
- Тензорезисторы
- Лекция 3 Механические свойства материалов
- Диаграмма растяжения
- Пластичность и хрупкость. Твердость
- Кривые растяжения материалов: а-хрупкого, б-пластичного
- Способы измерения твёрдости
- Для каждого материала существует установленная госТом сила вдавливания f
- Твёрдость материала по Бринелю рассчитывают исходя из площади отпечатка.
- Влияние энергии химических связей на свойства материалов
- Теоретическая и реальная прочности кристаллов на сдвиг
- Лекция 4 Кристаллизация металлов
- Самопроизвольная кристаллизация
- Кривые охлаждения металла
- Изменение скорости образования зародышей (с. З.) и скорости роста кристаллов (с. Р.) в зависимости от степени переохлаждения
- Несамопроизвольная кристаллизация
- Получение монокристаллов
- Схемы установок для выращивания монокристаллов
- Аморфное состояние металлов
- Термодинамическое обоснование диаграммы состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях Полиморфизм
- Лекция 5 Влияние нагрева на структуру и свойства металлов
- Холодная и горячая деформации
- Термическая обработка металлов и сплавов Определения и классификация
- Нагрев для снятия остаточных напряжений
- Рекристаллизационный отжиг
- Диффузионный отжиг (гомогенизация)
- Лекция 6 Термохимическая обработка Назначение и виды химико-термической обработки
- Цементация
- Цианирование и нитроцементация
- Азотирование
- Диффузионная металлизация
- Алитирование (Al)
- Хромирование (Cr)
- Борирование (b)
- Силицирование (Si)
- Поверхностно-пластическая деформация
- Литье под давлением
- Центробежное литье
- Литье под низким давлением
- Литье выжиманием
- Лекция 8 Конструкционные материалы Общие требования, предъявляемые к конструкционным материалам
- Прочность конструкционных материалов и критерии ее оценки
- Классификация конструкционных материалов
- Стали, обеспечивающие жесткость, статическую и циклическую прочности
- Классификация конструкционных сталей
- Влияние углерода и постоянных примесей на свойства стали
- Диаграмма состояния железоуглеродистых сплавов
- Превращения в сплавах системы железо-цементит
- Диаграмма состояния Fe-Fe3c
- Характерные точки диаграммы состояния железо-цементит
- Углеродистые стали
- Легированные стали
- Лекция 9 Цветные сплавы Медные сплавы
- Свойства промышленных латуней, обрабатываемых давлением
- Сплавы на основе алюминия
- Механические свойства алюминия
- Сплавы на основе магния
- Титан и сплавы на его основе
- Механические свойства иодидного и технического титана
- Лекция 10 Органические полимеры
- Дополнительные компоненты полимерных композиций
- Неполярные и слабополярные термопласты
- Полярные термопласты
- Термореактивные полимеры
- Слоистые пластмассы
- Металлопласты
- Лекция 11 Неорганические материалы
- Кристаллическая решетка графита
- Неорганическое стекло
- Ситаллы
- Керамика
- Лекция 12 Композиционные материалы Композиционные материалы с металлической матрицей
- Композиционные материалы с неметаллической матрицей
- Бороволокниты
- Органоволокниты
- Список литературы