Собственные полупроводники
Химически чистые полупроводники называются собственными полупроводниками. К ним относится ряд чистых химических элементов (германий, кремний, селен, теллур и др.) и многие химические соединения, такие, например, как арсенид галлия (GaAs), арсенид индия (InAs), антимонид индия (InSb), карбид кремния (SiC) и т. д.
На рис. а показана упрощенная схема зонной структуры собственного полупроводника. При абсолютном нуле его валентная зона укомплектована полностью, зона проводимости, расположенная над валентной зоной на расстоянии Eg является пустой. Поэтому при абсолютном нуле собственный полупроводник, как и диэлектрик, обладает нулевой проводимостью.
Чем уже запрещенная зона и выше температура кристалла, тем больше электронов переходит в зону проводимости, поэтому тем более высокую электропроводность приобретает кристалл.
Из изложенного вытекают следующие два важных вывода.
Проводимость полупроводников является проводимостью возбужденной: она появляется под действием внешнего фактора, способного сообщить электронам валентной зоны энергию, достаточную для переброса их в зону проводимости. Такими факторами могут быть нагревание полупроводников, облучение их светом и ионизирующим излучением.
где σ – удельная проводимость;
ρ – удельное электрическое сопротивление;
q – величина заряда;
μ – подвижность носителей заряда;
Подвижность носителей заряда характеризует способность перемещаться под действием электрического поля.
В металлах n практически не меняется. В полупроводниках n зависит от температуры.
где k – постоянная Больцмана
T – абсолютная температура
Разделение тел на полупроводники и диэлектрики носит в значительной мере условный характер. Алмаз, являющийся диэлектриком при комнатной температуре, приобретает заметную проводимость при более высоких температурах и может считаться также полупроводником. По мере того, как в качестве полупроводников начинают использоваться материалы со все более широкой запрещенной зоной, деление тел на полупроводники и диэлектрики постепенно утрачивает свой смысл.
В таблице приведены электрофизические свойства и характеристики зонной структуры трех типичных собственных полупроводников при комнатной температуре — кремния, германия и антимонида индия.
Вещество | Eg, эВ | ρ, Ом×м | μn,см2/В×с | μp,см2/В×с | γ, г/см3 | M, г/моль |
Ge (70÷800C) | 0,66 | 0,8 | 4000 | 3000 | 5,3 | 73 |
Si (120÷1400C) | 1,12 | 2000 | 1900 | 400 | 2,3 | 28 |
Из данных таблицы видно, что с уменьшением ширины запрещенной зоны резко возрастает концентрация свободных носителей заряда в полупроводнике и падает его удельное сопротивление.
- Министерство образования рф
- Лекция 1 Заполнение зон электронами. Проводники, диэлектрики и полупроводники
- Собственные полупроводники
- Примесные полупроводники
- Лекция 2 Принципы работы полупроводниковых приборов и их применение Диоды
- Прямое включение: Обратное включение:
- Стабилитроны
- Варикапы
- Светодиоды
- Фоторезисторы
- Люкс-амперная характеристика фоторезистора Фотоэлементы с p-n-переходом
- Фотодиоды
- Упрощенная структура фотодиода и его условное графическое обозначение
- Термоэлектрогенераторы и термоэлектрохолодильники
- Эффект Холла
- Тензорезисторы
- Лекция 3 Механические свойства материалов
- Диаграмма растяжения
- Пластичность и хрупкость. Твердость
- Кривые растяжения материалов: а-хрупкого, б-пластичного
- Способы измерения твёрдости
- Для каждого материала существует установленная госТом сила вдавливания f
- Твёрдость материала по Бринелю рассчитывают исходя из площади отпечатка.
- Влияние энергии химических связей на свойства материалов
- Теоретическая и реальная прочности кристаллов на сдвиг
- Лекция 4 Кристаллизация металлов
- Самопроизвольная кристаллизация
- Кривые охлаждения металла
- Изменение скорости образования зародышей (с. З.) и скорости роста кристаллов (с. Р.) в зависимости от степени переохлаждения
- Несамопроизвольная кристаллизация
- Получение монокристаллов
- Схемы установок для выращивания монокристаллов
- Аморфное состояние металлов
- Термодинамическое обоснование диаграммы состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях Полиморфизм
- Лекция 5 Влияние нагрева на структуру и свойства металлов
- Холодная и горячая деформации
- Термическая обработка металлов и сплавов Определения и классификация
- Нагрев для снятия остаточных напряжений
- Рекристаллизационный отжиг
- Диффузионный отжиг (гомогенизация)
- Лекция 6 Термохимическая обработка Назначение и виды химико-термической обработки
- Цементация
- Цианирование и нитроцементация
- Азотирование
- Диффузионная металлизация
- Алитирование (Al)
- Хромирование (Cr)
- Борирование (b)
- Силицирование (Si)
- Поверхностно-пластическая деформация
- Литье под давлением
- Центробежное литье
- Литье под низким давлением
- Литье выжиманием
- Лекция 8 Конструкционные материалы Общие требования, предъявляемые к конструкционным материалам
- Прочность конструкционных материалов и критерии ее оценки
- Классификация конструкционных материалов
- Стали, обеспечивающие жесткость, статическую и циклическую прочности
- Классификация конструкционных сталей
- Влияние углерода и постоянных примесей на свойства стали
- Диаграмма состояния железоуглеродистых сплавов
- Превращения в сплавах системы железо-цементит
- Диаграмма состояния Fe-Fe3c
- Характерные точки диаграммы состояния железо-цементит
- Углеродистые стали
- Легированные стали
- Лекция 9 Цветные сплавы Медные сплавы
- Свойства промышленных латуней, обрабатываемых давлением
- Сплавы на основе алюминия
- Механические свойства алюминия
- Сплавы на основе магния
- Титан и сплавы на его основе
- Механические свойства иодидного и технического титана
- Лекция 10 Органические полимеры
- Дополнительные компоненты полимерных композиций
- Неполярные и слабополярные термопласты
- Полярные термопласты
- Термореактивные полимеры
- Слоистые пластмассы
- Металлопласты
- Лекция 11 Неорганические материалы
- Кристаллическая решетка графита
- Неорганическое стекло
- Ситаллы
- Керамика
- Лекция 12 Композиционные материалы Композиционные материалы с металлической матрицей
- Композиционные материалы с неметаллической матрицей
- Бороволокниты
- Органоволокниты
- Список литературы