27. Гидрокрекинг. Химические основы процесса.
Гидрокрекинг можно рассматривать как совмещенный процесс, в котором одновременно осуществляются реакции как гидрогенолиза (т.е. разрыв связей C-S, C-N и С-О) и дегидрирования-гидрирования, так и крекинга (т.е. разрыв связи С-С). Но без коксообразования, с получением продуктов более низкомолекулярных по сравнению с исходным сырьем, очищенных от гетероатомов, не содержащих алкенов, но менее ароматизированных, чем при каталитическом крекинге.
Результаты гидрокрекинга (материальный баланс и качество продуктов) нефтяного сырья в сильной степени определяются свойствами катализатоpa: его гидрирующей и кислотной активностями и их соотношением. В зависимости от целевого назначения могут применяться катализаторы с преобладанием либо гидрирующей, либо крекирующей активности, в результате будут получаться продукты, соответствующие лёгкому гидрокрекингу или глубокому гидрокрекингу.
В основе каталитических процессов гидрокрекинга нефтяного сырья лежат реакции:
- гидрогенолиза гетероорганических соединений серы, азота, кислорода и гидрирования аренов и алкенов (т.е. все те реакции, которые протекают при гидроочистке);
- крекинга алкановых и циклановых углеводородов, деалкилирования циклических структур и изомеризации образующихся низкомолекулярных алканов.
Реакции ароматизации и поликонденсации до кокса, протекающие при каталитическом крекинге, в процессах гидрокрекинга, проводимых при высоком давлении водорода и пониженных температурах, сильно заторможены из-за термодинамических ограничений и гидрирования коксогенов посредством водорода.
Гидрогенолиз сераорганических соединений, азоторганических соединений и кислородорганических соединений протекает по механизму так же, как в процессах гидроочистки, и завершается образованием сероводорода, аммиака, воды и соответствующих углеводородов.
Гидрирование аренов осуществляется последовательным насыщением ароматических колец с возможным сопутствующим разрывом образующихся нафтеновых колец и деалкелированием.
Гидрокрекинг высокомолекулярных алканов на катализатоpax с высокой кислотной активностью осуществляется по карбоний-ионному механизму преимущественно с разрывом в средней части с наименьшей энергией связи С-С. Как и при каталитическом крекинге, вначале на металлических центрах катализатора происходит дегидрирование алканов с образованием алкенов. Затем алкены на кислотных центрах легко превращаются в карбкатионы и инициируют цепной карбоний-ионный процесс. Скорость гидрокрекинга при этом также возрастает с увеличением молекулярной массы алканов. Алканы с третичными углеродными атомами подвергаются крекингу со значительно большей скоростью, чем н-алканы. Так как распад карбоний-ионов с отщеплением фрагментов, содержащих менее 3 атомов углерода, сильно эндотермичен, при гидрокрекинге почти не образуются метан и этан и высок выход изобутана и изопентанов (больше равновесного). На катализаторах с высокой гидрирующей и умеренной кислотной активностями происходит интенсивное насыщение карбоний-ионов, в результате образуются алканы с большим числом атомов углерода в молекуле, но менее изомеризованные, чем на катализатоpax с высокой кислотностью.
Основные отличия гидрокрекинга от каталитического крекинга заключаются в том, что общая конверсия алканов выше в первом процессе, чем во втором. Это обусловлено легкостью образования алкенов на гидро-дегидрирующих центрах катализаторов гидрокрекинга. В результате наиболее медленная и энергоемкая стадия цепного механизма - инициирование цепи при гидрокрекинге протекает быстрее, чем при каталитическом крекинге без водорода. Катализаторы гидрокрекинга практически не закоксовываются, т.к. алкены подвергаются быстрому гидрированию и не успевают вступать в дальнейшие превращения с образованием продуктов полимеризации и уплотнения.
Циклоалканы с длинными алкильными цепями при гидрокрекинге на катализаторах с высокой кислотной активностью подвергаются изомеризации и распаду цепей, как алканы. Расщепление кольца происходит в небольшой степени. Интенсивно протекают реакции изомеризации 6-членных в 5-членные циклоалканы. Бициклические циклоалканы превращаются преимущественно в моноциклические алканы с высоким выходом производных циклопентана. На катализаторах с низкой кислотной активностью протекает в основном гидрогенолиз - расщепление кольца с последующим насыщением образовавшегося углеводорода.
- 1. Вредные примеси в нефти
- 2. Обезвоживание и обессоливание нефти
- 3. Общая характеристика оборудования электрообессоливающих установок
- 4. Основная схема атмосферной перегонки нефти
- 5. Основная схема вакуумной перегонки мазута
- 6. Общая характеристика аппаратов первичной переработки нефти
- 7. Термодинамика термических превращений соединений нефти
- 8. Кинетика и механизм термических превращений соединений нефти
- 9. Термический крекинг. Режим процесса. Принципиальная схема. Характеристика продукции.
- 10. Пиролиз. Режим процесса. Принципиальная схема. Характеристика продукции.
- 11. Замедленное и термоконтактное коксование. Режим процесса. Принципиальная схема. Характеристика продукции. Замедленное коксование
- Термоконтактное коксование
- 12. Висбрекинг нефтяных остатков. Режим процесса. Принципиальная схема. Характеристика продукции.
- 13. Назначение процесса каталитического крекинга. Качество продуктов и их использование.
- Качество продуктов кк и их использование
- 14. Требования к промышленным катализаторам кк. Активность, селективность и стабильность катализаторов.
- 15. Механизм действия катализаторов окислительно-восстановительного типа.
- 16. Кислотный катализ
- 17. Каталитический крекинг. Химические основы процесса. Превращения алканов, циклоалканов, алкенов и аренов.
- Химические основы процесса
- Каталитический крекинг алканов
- Каталитический крекинг циклоалканов
- Каталитический крекинг алкенов
- Каталитический крекинг алкилароматических углеводородов
- 18. Каталитический крекинг. Принципиальная технологическая схема. Режим процесса.
- 19. Каталитический риформинг. Химические основы процесса. Превращения алканов, циклоалканов.
- 20. Каталитический риформинг. Влияние гетероатомных соединений и металлов, коксообразование на катализаторах.
- 21. Каталитический риформинг в промышленности. Катализаторы процесса.
- 22. Классификация гидрогенизационных процессов в нефтепереработке.
- 23. Химические основы гидрогенизационных процессов.
- 24. Гидрогенизационные процессы. Превращения сероорганических, азотсодержащих, кислородсодержащих и металлоорганических соединений.
- 25. Гидрогенизационные процессы. Превращения ув. Катализаторы процесса.
- 26. Гидроочистка в промышленности.
- 27. Гидрокрекинг. Химические основы процесса.
- 28. Гидрокрекинг. Превращение алканов, циклоалканов, алкенов, аренов. Гидрокрекинг в промышленности.
- 29. Характеристика нефтяных газов. Очистка и осушка газов.
- 30. Разделение газов
- 31. Алкилирование. Изомеризация. Полимеризация алкенов.