30. Разделение газов
На нефте- и газоперерабатывающих заводах наибольшее распространение получили следующие физические процессы разделения углеводородных газов на индивидуальные или узкие технические фракции: конденсация, компрессия, ректификация и абсорбция. На ГФУ эти процессы комбинируются в различных сочетаниях.
Компрессия и конденсация — процессы сжатия газа компрессорами и охлаждения его в холодильниках с образованием двухфазной системы газа и жидкости. С повышением давления и понижением температуры выход жидкой фазы возрастает, причем сконденсировавшиеся углеводороды облегчают переход легких компонентов в жидкое состояние, растворяя их. Обычно применяют многоступенчатые (2, 3 и более) системы компрессии и охлаждения, используя в качестве хладоагентов воду, воздух, испаряющиеся аммиак, пропан или этан. Разделение сжатых и охлажденных газов осуществляют в газосепараторах, откуда конденсат и газ направляют на дальнейшее фракционирование методами ректификации или абсорбции.
Абсорбция — процесс разделения газовых смесей, основанные на избирательном поглощении отдельных компонентов сырья жидким поглотителем — абсорбентом. Растворимость углеводородов в абсорбенте возрастает с повышением давления, ростом молекулярной массы и понижением температуры процесса ниже критической температуры абсорбируемого газа.
Абсорбция — обратимый процесс, и на этом основано выделение поглощенного газа из жидкости — десорбция. Сочетание абсорбции с десорбцией позволяет многократно применять поглотитель и выделять из него поглощенный компонент. Для десорбции благоприятны условия, противоположные тем, при которых проводят абсорбцию, то есть повышенная температура и низкое давление Наилучшим абсорбентом для углеводородных газов являются близкие им по строению и молекулярной массе жидкие углеводороды, например бензиновая или керосиновая фракции.
Ректификация является завершающей стадией разделения углеводородных газов. Особенность ректификации сжиженных газов, но сравнению с ректификацией нефтяных фракций - необходимость разделения очень близких но температуре кипения компонентов или фракций сырья при высокой четкости фракционирования. Так. разница между температурами кипения этана и этилена составляет 15°С. Наиболее трудно разделить бутан-бутиленовую фракцию: температура кипения изобутана при нормальном давлении составляет 11,7°С, изобутилена — 6,9, бутена — 1-6,29, а н-бутана — 0,5.
Ректификацию сжиженных газов приходится проводить при повышенных давлениях в колоннах, поскольку для создания жидкостного орошения необходимо сконденсировать верхние продукты колонн в обычных воздушных и водяных холодильниках, не прибегая к искусственному холоду.
Конкретный выбор схемы (последовательности) разделения, температуры, давления и числа тарелок в колоннах определяется составом исходной газовой смеси, требуемой чистотой и заданным ассортиментом получаемых продуктов.
На НПЗ для разделения нефтезаводских газов применяются преимущественно 2 типа газофракционирующих установок, в каждый из которых входят блоки компрессии и конденсации: ректификационный — сокращенно ГФУ и абсорбционно-ректификационный — АГФУ. На рис. 3.22 и 3.23 приведены принципиальные схемы ГФУ для разделения предельных газов и АГФУ для фракционирования жирного газа и стабилизации бензина каталитического крекинга (на схемах не показаны блоки сероочистки, осушки, компрессии и конденсации).
В блоке ректификации ГФУ (рис. 3.22) из углеводородного газового сырья сначала в деэтанизаторе 1 извлекают сухой газ, состоящий из метана и этана. На верху колонны 1 поддерживают низкую температуру подачей орошения, охлаждаемого в аммиачном конденсаторе-холодильнике. Кубовый остаток деэтанизатора поступает в пропановую колонну 2, где разделяется на пропановую фракцию, выводимую с верха этой колонны, и смесь углеводородов С4 и выше, направляемую в бутановую колонну 3. Ректификатом этой колонны является смесь бутанов, которая в изобутановой колонне 4 разделяется на изобутановую и бутановую фракции. Кубовый продукт колонны 3 подается далее в пентановую колонну 5, где в виде верхнего ректификата выводится смесь пентанов, которая в изопентановой колонне 6 разделяется на н-пентан и изопентан. Нижний продукт колонны 5 — фракция С6 и выше — выводится с установки.
Рисунок 3.22. Принципиальная схема ГФУ:
1 – деэтанизатор; 2 – пропановая колонна; 3 – бутановая колонна; 4 – изобутановая колонна; 5 – пентановая колонна; 6 –изопентановая колонна; I – сырье; II – сухой газ; III – пропановая фракция; IV – изобутановая фракция; V – бутановая фракция; VI – изопентановая фракция; VII – пентановая фракция; VIII – фракция С6 и выше
Для деэтанизации газов каталитического крекинга на установках АГФУ (рис. 3.23) используется фракционирующий абсорбер 1. Он представляет собой комбинированную колонну абсорбер-десорбер. В верхней части фракционирующего абсорбера происходит абсорбция, то есть поглощение из газов целевых компонентов (С3 и выше), а в нижней — частичная регенерация абсорбента за счет подводимого тепла. В качестве основного абсорбента на АГФУ используется нестабильный бензин каталитического крекинга. Для доабсорбции унесенных сухим газом бензиновых фракции в верхнюю часть фракционирующего абсорбера подается стабилизированный (в колонне 4) бензин. Абсорбер оборудован системой циркуляционных орошений для съема тепла абсорбции (на рис. 3.23 не показана). Тепло в низ абсорбера подается с помощью «горячей струи». С верха фракционирующего абсорбера 1 выводится сухой газ (С1-С2), а с низа вместе с тощим абсорбентом выводятся углеводороды С3 и выше. Деэтанизированный бензин, насыщенный углеводородами С3 и выше, после подогрева в теплообменнике подается в стабилизационную колонну 2, нижним продуктом которого является стабильный бензин, а верхним — головка стабилизации. Из нее (иногда после сероочистки) в пропановой колонне 3 выделяют пропан-пропиленовую фракцию. Кубовый продукт пропановой колонны разделяется в бутановой колонне 4 на бутан-бутиленовую фракцию и остаток (С5 и выше), который объединяется со стабильным бензином.
Рис. 3.23. Принципиальная схема АГФУ:
1 — фракционирующий абсорбер; 2 — стабилизационная колонна; 3 — пропановая колонна; 4 —бутановая колонна; I — очищенный жирный газ; II — нестабильный бензин; III — сухой газ; IV — пропан-пропиленовая фракция; V — бутан-бутиленовая фракция; VI — стабильный бензин
- 1. Вредные примеси в нефти
- 2. Обезвоживание и обессоливание нефти
- 3. Общая характеристика оборудования электрообессоливающих установок
- 4. Основная схема атмосферной перегонки нефти
- 5. Основная схема вакуумной перегонки мазута
- 6. Общая характеристика аппаратов первичной переработки нефти
- 7. Термодинамика термических превращений соединений нефти
- 8. Кинетика и механизм термических превращений соединений нефти
- 9. Термический крекинг. Режим процесса. Принципиальная схема. Характеристика продукции.
- 10. Пиролиз. Режим процесса. Принципиальная схема. Характеристика продукции.
- 11. Замедленное и термоконтактное коксование. Режим процесса. Принципиальная схема. Характеристика продукции. Замедленное коксование
- Термоконтактное коксование
- 12. Висбрекинг нефтяных остатков. Режим процесса. Принципиальная схема. Характеристика продукции.
- 13. Назначение процесса каталитического крекинга. Качество продуктов и их использование.
- Качество продуктов кк и их использование
- 14. Требования к промышленным катализаторам кк. Активность, селективность и стабильность катализаторов.
- 15. Механизм действия катализаторов окислительно-восстановительного типа.
- 16. Кислотный катализ
- 17. Каталитический крекинг. Химические основы процесса. Превращения алканов, циклоалканов, алкенов и аренов.
- Химические основы процесса
- Каталитический крекинг алканов
- Каталитический крекинг циклоалканов
- Каталитический крекинг алкенов
- Каталитический крекинг алкилароматических углеводородов
- 18. Каталитический крекинг. Принципиальная технологическая схема. Режим процесса.
- 19. Каталитический риформинг. Химические основы процесса. Превращения алканов, циклоалканов.
- 20. Каталитический риформинг. Влияние гетероатомных соединений и металлов, коксообразование на катализаторах.
- 21. Каталитический риформинг в промышленности. Катализаторы процесса.
- 22. Классификация гидрогенизационных процессов в нефтепереработке.
- 23. Химические основы гидрогенизационных процессов.
- 24. Гидрогенизационные процессы. Превращения сероорганических, азотсодержащих, кислородсодержащих и металлоорганических соединений.
- 25. Гидрогенизационные процессы. Превращения ув. Катализаторы процесса.
- 26. Гидроочистка в промышленности.
- 27. Гидрокрекинг. Химические основы процесса.
- 28. Гидрокрекинг. Превращение алканов, циклоалканов, алкенов, аренов. Гидрокрекинг в промышленности.
- 29. Характеристика нефтяных газов. Очистка и осушка газов.
- 30. Разделение газов
- 31. Алкилирование. Изомеризация. Полимеризация алкенов.