4.8 Согласование и передача сигналов
Передача информации между различными частями системы управления является одним из неотъемлемых и критически важных элементов. Сигналы, вырабатываемые датчиками, обычно имеют весьма низкий уровень, поэтому для дальнейшей передачи их необходимо обработать и усилить. Уровни сигнала и импедансы выхода датчика, кабеля и входа компьютера должны соответствовать друг другу. Обработка сигнала для достижения указанного соответствия называется согласованием сигнала.
Другой очень важной практической проблемой являются наводки. Любое электронное устройство способствует возникновению электрических возмущений. Если две электрические цепи по тем или иным причинам расположены рядом друг с другом, то изменение тока или напряжения в одной цепи вызывает также изменения тока и напряжения в другой. В частности, соединительные провода и кабели выступают в качестве антенны для шумов и возмущений. Многие проблемы, связанные с электрическими наводками, можно решить с помощью экранирования цепей и заземления; некоторые принципы экранирования рассмотрены в этом разделе. Выбор способа передачи сигнала (напряжение, ток или свет) зависит от нескольких факторов, главным из которых является устойчивость к наводкам и шумам. В этом разделе будут приведены различные методы решения этих проблем.
4.8.1 Электрические помехи
Помехи, возникающие в электрическом проводнике, могут иметь различную природу. Обычно помехи вызваны одним из следующих типов связи между их источником и проводником:
резистивной;
ёмкостной;
индуктивной (магнитной).
Резистивная (или гальваническая) связь между проводником и источником помех не зависит от частоты возмущающего сигнала. Напротив, при емкостной или индуктивной связи степень влияния зависит от частоты помех — чем выше частота, тем больше энергии получается от источника возмущений. На практике это означает, что электрические цепи, в которых происходят быстрые изменения тока и/или напряжения могут быть более серьезными источниками помех, чем низкочастотные. Вообще говоря, взаимодействие с источником возмущений редко относится к одному типу, обычно — это комбинация всех трех вышеперечисленных типов. Серьезные проблемы с помехами возникают, когда проводники с маломощными сигналами расположены вблизи силовых кабелей. Каждый провод в соединительных цепях датчика с обрабатывающим электронным устройством является потенциальным приемником электрических помех.
Чтобы создать для электронного оборудования среду, максимально свободную от наводок, постоянно проводится множество исследований и разработок. Целью является достижение электромагнитной совместимости (electromagnetic compatibility -EMC) в рамках электрических цепей, а также между различными цепями и системами. Электрический прибор должен, с одной стороны, быть нечувствительным к внешним помехам и, с другой стороны, не должен генерировать помех, которые могут оказать влияние на другую аппаратуру.
Резистивная связь
Когда несколько электронных устройств одновременно имеют общий источник питания и общее заземление, могут возникать взаимодействия резистивного характера. Довольно часто встречающиеся источники помех — плохо заземленные электродвигатели и преобразователи частоты с полупроводниковыми вентилями. Один из способов избежать такого типа взаимодействия - обеспечить для чувствительного электронного оборудования выделенный источник питания. Другая возможность — это гальваническая развязка источников питания и аппаратуры. В этом случае прямая электрическая связь между различными источниками питания и электрооборудованием отсутствует.
Емкостная связь
Между двумя проводниками или между проводником и источником помех почти всегда существует емкостная связь, которая возникает из-за того, что переменное напряжение наводит в проводнике ток, пропорциональный производной напряжения по времени. Емкостные связи должны быть сведены до минимума. Они уменьшаются с увеличением расстояния между проводниками.
Распространенный способ борьбы с этим явлением — защитный электростатический экран. Экран должен быть заземлен, чтобы его потенциал равнялся нулю. Такая мера обеспечивает хорошую защиту, хотя на концах кабеля, где проводник присоединен к датчику или к электронным схемам, например к входному порту компьютера, могут возникнуть некоторые проблемы. Причина в том, что в этих местах экран неполностью закрывает и защищает проводник. На небольших, незащищенных оконечных участках могут возникнуть слабые емкостные связи, поэтому важно делать такие участки как можно короче.
Индуктивная (магнитная) связь
Проводник с током индуцирует вокруг себя магнитное поле с напряженностью, пропорциональной величине тока. Соответственно, магнитное взаимодействие создает серьезные проблемы вблизи силовых кабелей, по которым текут значительные токи. Переменный ток возбуждает переменное магнитное поле, которое в свою очередь наводит э.д.с. индукции в другом проводнике, пересекающем поле. По закону индукции при заданной величине взаимной индукции М между проводниками напряжение V, индуцируемое в проводнике, есть
где i - ток другого проводника проводника.
Если проводник, в котором наводится э.д.с., представляет собой часть замкнутого контура, то в нем будет циркулировать ток. Этот индуктивный ток пропорционален площади, охватываемой проводниками, через которую проходит магнитный поток.
Существует несколько способов уменьшить влияние индуктивных связей. Площадь контура, сцепленного с магнитным потоком, можно уменьшить, используя витые провода; уменьшение этой площади означает снижение индуцируемого напряжения. Более того, при скрутке "изменяется знак" потокосцепления на каждом витке, так что результирующее потокосцепление становится незначительным. Собственно поэтому применяется кабель на основе витой пары, а не просто состоящий из параллельных проводников.
Проводник, по которому передается измерительная информация, должен быть расположен как можно дальше от источников помех. В частности, чувствительные электронные приборы не должны размещаться вблизи трансформаторов и индукторов. Кабели должны располагаться таким образом, чтобы возможные поля помех распространялись вдоль них. Необходимо следовать двум простым правилам: во-первых, низковольтные сигнальные кабели и высоковольтные силовые кабели не должны прокладываться вблизи друг друга в одних и тех же каналах и, во-вторых, сигнальные и силовые кабели должны пересекаться, если это неизбежно, только под прямым углом.
Магнитное поле можно ослабить экранированием. Медный или алюминиевый экран имеет очень высокую проводимость, и, благодаря возбуждению магнитным полем вихревых токов в экране, магнитный поток ослабляется. Экран можно выполнить из материала с высокой магнитной проницаемостью, например из железа. Магнитный экран часто бывает довольно объемным, поскольку для демпфирования магнитного потока требуется достаточная толщина стенок. Поэтому экранирование используется в основном для аппаратуры, генерирующей сильные магнитные поля.
Практические советы ("Неписаные законы")
Ниже дан перечень некоторых из основных правил для уменьшения влияния электромагнитных наводок на измерительное оборудование (датчики, сигнальные кабели и обрабатывающие электронные схемы). Очевидно, что в первую очередь следует снизить интенсивность источника помех. Другие помехообразующие факторы, влияние которых должно быть сведено к минимуму:
гальваническая связь;
расстояние до источника помех;
частотный спектр помех.
Для уменьшения влияние емкостных связей необходимо:
применять экранированный кабель;
минимизировать длину неэкранированных участков на концах кабеля.
Влияние магнитных связей уменьшается, если:
используется витой кабель, так как уменьшается площадь магнитного потока охватываемая проводником, а ориентация поля постоянно изменяется;
подключены несколько датчиков, так как для каждого из них используется своя витая пара;
силовые и сигнальные кабели проложены раздельно; сигнальные кабели расположены на достаточном расстоянии от источников помех;
низковольтные и высоковольтные кабели пересекаются под прямым углом.
4.8.2 Сигнальное заземление
Заземление (earthing, grounding) представляет собой физическое присоединение нескольких цепей к общему потенциалу. Сигнальное заземление соответствует созданию точки общего нулевого потенциала для измерительных сигналов. Теоретически все точки, которые должны быть заземлены, присоединяются к этому нулевому потенциалу без каких-либо сопротивлений или индуктивностей. К сожалению, на практике это невыполнимо. Проблемы, связанные с низким качеством заземления, являются наиболее распространенными, и именно их труднее всего обнаружить. Это справедливо и для небольшой электронной схемы, и для большого предприятия.
На рис. 4.16 представлена простая измерительная система с источником напряжения Us, присоединенным к заземлению Р1, и собственно измерительные устройства, присоединенные к заземлению Р2. Два отдельных заземления редко имеют одинаковый потенциал, поэтому между ними существует ток утечки. Вольтметр покажет неправильное значение напряжения US, а искаженную величину US+Ug. В больших и сложных системах часто имеются отдельные заземления для датчиков, кабелей, компьютерного оборудования, силовых элементов и шасси аппаратуры. Все эти отдельные системы заземления должны быть присоединены к общей точке заземления, как это показано на рис. 4.17.
Рисунок 4.16 - Простая измерительная система с двумя заземлениями
Рисунок 4.17 - Общее заземление для различных компонентов системы
Практическое правило для кабелей, по которым передаются аналоговые сигналы, — заземление должно быть как можно ближе к источнику сигнала, т. е. датчику. Конечно, это может создать трудности в крупных технических системах с большим количеством длинных кабелей. Желательно изолированное заземление компьютерного оборудования, поскольку цифровые системы как излучают, так и легко воспринимают высокочастотные сигналы. Более старые аналоговые системы сбора данных по большей части подвержены влиянию низкочастотных наводок.
Раздельное заземление рекомендуется производить для релейных схем, двигателей и других устройств, которые потребляют большие токи. Наконец, шасси аппаратуры должны быть присоединены к отдельному заземлению, а это последнее — к общему заземлителю.
Экраны сигнальных кабелей обычно также заземляют. Чтобы избежать замкнутых контуров в схемах заземления, экраны соединяют с "землей" только в одной точке — или вблизи от источника сигнала (датчика), или вблизи последующих электронных устройств. Первый вариант дает лучшее ослабление помех (рис. 4.18).
Рисунок 4.18 - Система с датчиком и дифференциальным усилителем (заземление экранирующей оболочки кабеля выполнено вблизи датчика)
Проблемы, связанные с заземлением в контрольно-измерительных системах, можно обобщить в следующих правилах.
Правило 1. Необходимо четко определить пути протекания тока. Токи, текущие от силового оборудования, должны возвращаться к тем же устройствам. Проводники, присоединенные к электрическим элементам, могут называться "землей", но в действительности функционировать как замкнутый контур и вызывать искажение напряжения или пиковые возмущения из-за импеданса кабелей. Следует применять провода соответствующего сечения как для силовых цепей, так и для цепей заземления.
Правило 2. Цифровые и аналоговые цепи должны заземляться раздельно. Когда цифровая система изменяет свое логическое состояние, на "цифровом заземлении" могут появляться значительные всплески напряжения. Поскольку аналоговые цепи обычно очень чувствительны к возмущениям, то раздельное заземление снижает влияние резистивной связи.
4.8.3 Выбор носителя сигнала: напряжение или ток
Выбор носителя сигнала для передачи измерительных данных от датчика к компьютеру зависит от нескольких факторов. Наиболее существенное соображение, которое следует принимать во внимание, — сигнал должен быть по возможности малочувствительным к электрическим возмущениям.
Передача сигнала напряжением. Каждый кабель обладает определенным погонным сопротивлением. Если входной импеданс последнего элемента в цепи — устройства обработки сигнала — не бесконечность, то по кабелю будет протекать ток и в результате произойдет падение напряжения. Если изменяется амплитуда сигнала, то некоторый ток потечет между проводами из-за распределенных емкостей. Следовательно, разумно всегда считаться с некоторым падением напряжения на линии передачи. Требование, чтобы устройства обработки имели высокий входной импеданс, приводит к тому, что они очень чувствительны к помехам. Следовательно, напряжение не слишком пригодно для передачи данных в случаях, когда могут быть заметные помехи.
Главная причина популярности напряжения для передачи сигналов — это, с одной стороны, присущая этому методу простота, а с другой — широкая доступность устройств для усиления, фильтрации и других видов обработки. Например, если необходимо, чтобы один и тот же сигнал поступил на вход нескольких схем, достаточно соединить эти схемы параллельно (с учетом входного импеданса). Несмотря на это, напряжение не очень часто используется в промышленных системах, поскольку сигналы в них должны передаваться на большие расстояния и влияние источников помех может стать значительным.
Наиболее важные уровни сигналов напряжения стандартизованы (стандарт IEC381): +1..5В, 0..5В, 0..10В, -10..10В.
Передача сигнала током. Для передачи сигнала на значительное расстояние лучше использовать не напряжение, а ток, потому что он остается постоянным по длине кабеля, а напряжение падает из-за сопротивления кабеля. На конце кабеля токовый сигнал можно преобразовать в напряжение с помощью высокоточного шунтирующего резистора (рис. 4.28).
При передаче токовых сигналов выходное напряжение датчика преобразуется операционным усилителем в ток. Приемник — операционный усилитель на конце цепи — в идеале должен иметь нулевой входной импеданс. В действительности, импеданс определяется шунтом и обычно имеет порядок нескольких сотен Ом. Для тока 20 мА при сопротивлении шунта 250 Ом падение напряжения будет составлять 5 В. Если источник сигнала, т. е. преобразователь напряжения в ток, имеет высокий выходной импеданс, тогда любая помеха при передаче приведет к небольшому, обычно допустимому падению напряжения на шунте.
Токовые сигналы, как правило, используются на низких частотах до 10 Гц. При постоянном токе и идеальной изоляции сопротивление кабеля не влияет на сигнал, т. е. величина тока на входе приемника — обрабатывающей схемы — такая же, как на выходе источника сигнала. При переменном токе влияние емкостного эффекта становится заметным и часть тока будет теряться по длине кабеля, уходя либо в обратный провод, либо в заземленный экран. Международный стандарт. IEC 381 рекомендует для передачи сигналов диапазон токов 4-20 мА. Минимальный уровень сигнала определен как 4 мА, чтобы можно было обнаружить разрыв цепи (0 мА).
Преобразователь напряжения в ток — стандартный элемент цепи. Сигнал передается по витой паре, длина которой может достигать нескольких сот метров. Шунтирующий резистор для преобразования тока в напряжение в диапазоне от 0-2 до 10 В должен иметь величину порядка 500 Ом.
Питание и датчика, и преобразователя и передача выходного сигнала могут осуществляться по одной и той же паре проводов. Это можно сделать при условии, что ток, потребляемый датчиком и преобразователем, не меняется, тогда любое изменение тока в цепи, очевидно, отражает работу датчика. Напротив, как было сказано ранее, передача сигнала напряжением требует трех кабелей.
Подводя итоги, можно сказать, что измерительная система, использующая ток для передачи сигнала и датчик, гальванически изолированный от выходного сигнала, имеет несколько преимуществ:
удовлетворительно работает на протяженных коммуникациях;
допускает простую процедуру проверки, поскольку величина тока 0 мА означает, что датчик отключен или линия разомкнута;
обеспечивает хорошую защиту от помех;
для системы достаточно только два провода, что позволяет снизить затраты.
4.8.4 Передача оптических сигналов
Передача сигналов по оптоволоконному кабелю стала обычной практикой во многих измерительных и коммуникационных приложениях. Оптическая передача информации требует весьма сложного и, соответственно, дорогостоящего цифрового коммуникационного оборудования. С помощью светодиодов (light-emitting diode -LED) цифровые электрические сигналы преобразуются в световые импульсы, которые затем передаются по оптическому волокну. На приемном конце световые импульсы снова преобразуются в электрические сигналы с помощью оптоэлектронных датчиков.
Оптический сигнал невосприимчив к магнитным и электрическим помехам и обеспечивает абсолютную изоляцию. Этот способ передачи предпочтителен для больших расстояний (>1 км), а также в сложных условиях, например, вблизи электродвигателей и преобразователей частоты. Применение оптических сигналов в технических системах обусловлено в большей степени их помехоустойчивостью, чем высокой пропускной способностью.
4.8.5 Бинарные (двухпозиционные) исполнительные механизмы
Очень часто для управления достаточно исполнительных механизмов, имеющих только два рабочих состояния. Эти механизмы называются двухпозиционными или бинарными. Они похожи на электрический выключатель: включен — есть ток, выключен — тока нет. К двухпозиционным исполнительным механизмам, в частности, относятся магнитные клапаны, электромагнитные реле и электронные твердотельные выключатели. Для управления такими механизмами достаточно одного-двух бит, которые легко можно получить на выходе управляющего компьютера. Управляющий сигнал можно усиливать простым переключателем, а не сложным линейным усилителем.
Бинарные исполнительные механизмы бывают с одним (monostable) и двумя (bistable) устойчивыми состояниями. Исполнительный механизм с одним устойчивым состоянием, которому соответствует отключение питания, управляется только одним сигналом. Дистанционный контактор электродвигателя обычно является устройством такого типа. Пока на контактор приходит управляющий сигнал, двигатель получает питание, но как только сигнал пропадает, питание выключается.
Устройство с двумя устойчивыми состояниями сохраняет свое текущее состояние до тех пор, пока не получит новый управляющий сигнал, изменяющий его. Можно сказать, что исполнительный механизм "помнит" свое последнее положение. Например, чтобы привести в движение цилиндр, управляемый магнитным клапаном с двумя устойчивыми положениями, необходимы один сигнал для открытия и другой сигнал для закрытия. Исполнительные механизмы с двумя устойчивыми состояниями управляются импульсными, а не аналоговыми сигналами.
4.8.6 Управляемые выключатели
Уровень мощности выходного сигнала компьютера обычно очень мал: уровень напряжения "мощного" выходного сигнала лежит между +2 В и +5 В, а "маломощного" — менее 1 В. Максимальный ток зависит от присоединенной нагрузки, но, как правило, он менее 20 мА. Обычный выходной порт компьютера выдает мощность порядка 100 мВт. Это означает, что для управления большинством исполнительных механизмов сигнал компьютера нужно усилить. Для этого используются управляемые выключатели.
Наиболее распространенным электрически изолированным выключателем в системах управления всегда было электромеханическое реле. Реле — надежный выключатель, который может работать как на переменном, так и на постоянном токе. Ток, протекающий по обмотке реле, создает магнитное поле, перемещающее якорь из одного положения в другое. Таким образом, размыкаются и замыкаются электрические контакты, которые сами по себе могут пропускать токи, значительно большие, чем требуется для управления собственно реле. Типичный ток обмотки реле составляет около 0.5 А при напряжении 12В, поэтому реле нельзя управлять непосредственно с выхода компьютера; требуется промежуточный выключатель средней мощности, например транзисторный усилитель, который устанавливается между выходом компьютера и реле. При проектировании систем с реле всегда необходимо помнить о проблемах энергоснабжения, поэтому при снятом питании реле должно принимать безопасное положение. Другими словами, отключение питания релейной системы не должно приводить к нежелательному поведению присоединенной нагрузки.
Существуют различные типы реле в широком диапазоне мощностей от милливольтных поляризованных реле до киловаттных контакторов. Маломощные поляризованные реле для коммутаций сигналов небольшой мощности существуют в исполнении на платах расширения компьютера. Реле для больших мощностей слишком велики для этого и устанавливаются отдельно, чаще всего в закрытых стойках. Дополнительным преимуществом-реле является то, что их работа хорошо знакома монтажникам и обслуживающему персоналу.
Среди недостатков реле следует отметить их относительно низкое быстродействие — переключение требует порядка нескольких миллисекунд, вместо микросекунд для электронных устройств. У реле, так же как и у механических выключателей, бывает так называемое дребезжание контактов, которое может вызвать помехи, что в свою очередь влияет на измерительную аппаратуру и электронику компьютера.
Твердотельные полупроводниковые приборы {solid-state semiconductor) применяются для переключений больших мощностей, поскольку лишены многих недостатков реле. Твердотельный выключатель имеет управляющий вход, присоединенный к устройству управления. Твердотельные силовые выключатели могут приводиться в действие непосредственно выходными сигналами цепей цифровой логики, поэтому их довольно просто использовать в компьютерном управлении.
Различные типы управляемых выключателей используются для коммутации малых и средних мощностей. Интегральные схемы с транзисторным выходом можно использовать до напряжений порядка 80В и токов до 1,5А; такие схемы управляются выходным сигналом компьютера. Когда уровень выходного сигнала компьютера превышает 2,4В, ток, управляемый электронным выключателем, протекает через исполнительный механизм, а когда уровень сигнала ниже 0,4 В, транзистор заперт и ток не течет. В такой конфигурации транзистор работает как простой насыщающийся усилитель.
Для больших мощностей конструкция выключателя может основываться на пороговых транзисторах (discrete power transistors) или полевых МОП-транзисторах (полевой транзистор со структурой металл-оксид-полупроводник, Metal-Oxide-Semiconductor Field-Effect Transistor — MOSFET). Такие цепи могут пропускать токи 5-10А и выдерживать разность потенциалов более 100 В. Из-за наличия внутреннего сопротивления при прохождении тока транзистор рассеивает некоторую энергию, поэтому, чтобы избежать перегрева, их нужно монтировать с учетом требований охлаждения.
При управлении большими мощностями (> 100 Вт) между выходом компьютера и электронным выключателем не должно быть прямых электрических связей, в противном случае выключатель является источником помех, которые могут повлиять на работу компьютера. Кроме того, при пробое выключателя высокое напряжение, предназначенное для питания привода, может повредить компьютер через прямую электрическую связь. Чтобы избежать указанных проблем, необходима гальваническая развязка. Например, схема с использованием оптической передачи сигнала управления, включающая светодиод и фототранзистор, расположенные вблизи друг друга и исключающие прямой электрический контакт.
Важный класс полупроводниковых выключателей — тиристоры. Типичными представителями этого класса являются симметричный триодный тиристор, или симмистор (TRIode AC semiconductor — Triacs), и однооперационный триоидный тиристор, или однооперационный тринистор (Silicon-Controlled Rectifier — SCR). Другое название этих полупроводниковых приборов — управляемые твердотельные выпрямители (solid-state controlled rectifiers). После того как тиристор, включенный управляющим импульсом, "поджигается", он будет оставаться включенным до тех пор, пока через него течет ток. Другими словами, в отличие от силового или полевого транзистора тиристор не выключается, когда исчезает управляющий сигнал. Тиристор не отключается даже если приложенное напряжение падает до нуля. Отключение происходит только в том случае, если управляющее напряжение меняет знак — вынужденная коммутация. Тиристоры чаще всего используются для отключения переменных токов, потому что изменение полярности через одинаковые промежутки времени, по крайней мере один раз за период, позволяет погасить тиристор при отсутствии управляющего импульса — естественная коммутация.
Тиристоры могут управлять значительно большими мощностями, чем силовые или полевые транзисторы. В проводящем состоянии внутреннее сопротивление тиристора практически равно нулю, соответственно, падение напряжения и выделение тепла минимальны, и ими можно пренебречь.
- 7(8).092501 «Автоматизированное управление
- Содержание
- Глава 6 общая структура ПрограммноГо обеспечениЯ асу тп 84
- Глава 7 Принципы проектирования пользовательского интерфейса 93
- Глава 8 Надежность систем автоматизации 97
- Глава 9 Средства самодиагностики и восстановления 123
- Глава 10 Метрологическое обеспечение асу тп 129
- Глава 1 Общая характеристика асу тп
- 1.1 Термины и определения
- 1.2 Функции асу тп
- I. Информационные
- II. Управляющие:
- III. Вспомогательные:
- 1.3 Состав асутп
- 1.4 Классификация асу тп
- Глава 2 Концепция построения асу тп
- 2.1 Особенности систем цифрового управления
- 2.2 Концепция построения асутп
- 2.3 Аппаратная платформа контроллеров
- Глава 3 Организация разработки по асу тп
- 3.1 Стадии создания асу тп
- 3.2 Этапы создания специализированного программного и информационного обеспечения (спио)
- 3.3 Техническое задание на разработку спио
- 3.4 Технический проект спио
- 3.5 Программы и программные документы спио
- Глава 4 Информационное обеспечение асу
- 4.1 Общие положения
- 4.1.1 Цепочка прохождения информационного сигнала о ходе тп:
- 4.1.2 Схемы связи с датчиками (о параметрах тп)
- 4.2 Вход и выход технологических процессов
- 4.3 Бинарные и цифровые датчики
- 4.4 Аналоговые датчики
- 4.5 Датчики движения
- 4.6 Датчики силы, момента и давления
- 4.7 Датчики приближения
- 4.8 Согласование и передача сигналов
- 4.8 Устройства связи с объектом
- Глава 5 Алгоритмическое и программное обеспечение задач контроля и первичной обработки информации
- 5.1 Назначение алгоритмов контроля
- 5.2 Аналитическая градуировка (масштабирование) и коррекция показаний датчиков
- 5.3 Фильтрация и сглаживание
- 5.4 Достоверность исходных данных и аварийная сигнализация
- 5.5 Интерполяция и экстраполяция
- 5.6 Статистическая обработка экспериментальных данных
- 5.7 Дискретизация технологической информации.
- 5.8 Задачи характеризации
- 5.10 Структура данных для обработки измерений
- Глава 6 общая структура ПрограммноГо обеспечениЯ асу тп
- 6.1 Особенности объектов автоматизации черной металлургии
- 6.2 Асу тп как система функциональных задач
- 6.3 Факторы, определяющие качество специального программного обеспечения
- 6.4 Основные требования и структура спо асутп
- 6.5 Основные подсистемы спо асутп
- Назначение алгоритмов контроля.
- Глава 7 Принципы проектирования пользовательского интерфейса
- 7.1 Основные требования
- 7.2 Дизайн операторского интерфейса
- 7.3 Виды видеокадров асутп
- Глава 8 Надежность систем автоматизации
- 8.1 Общие сведения о надежности автоматизируемых систем
- Показатели надежности систем
- Показатели надежности восстанавливаемых систем
- 8.4 Принципы описания надежности асутп. Отказы ас
- 8.6 Общая характеристика условий работы автоматических систем
- 8.7 Методы повышения надежности автоматических систем
- 8.7.1 Повышение надежности при проектировании
- Глава 9 Средства самодиагностики и восстановления
- Глава 10 Метрологическое обеспечение асу тп
- 10.1 Асу тп как объект метрологического обеспечения
- 10.2 Метрологическая аттестация асу тп