logo
Необходимость переработки медного концентрата

2. Описание технологического процесса

Обжигом называют пирометаллургический процесс, проводимый в интервале температур 600-1200 0С с целью изменения химического и фазового состава перерабатываемого сырья.

Окислительный обжиг применяют подготовительной обработки сульфидных материалов перед плавкой с целью частичного или полного перевода сульфидов в оксиды.

Основным назначением окислительного обжига медных концентратов перед плавкой на штейн является частичное окисление сульфида железа и перевод его в оксидную форму для того, чтобы при последующей плавки огарка больше железа перешло в шлак. Тогда штейны будут получены с большим содержанием меди. Конечный состав штейна при этом определяется тем, сколько серы было удалено при обжиге. Обычно степень десульфуризации при обжиге составляет 70-75%.

Окисление сульфидов при обжиге осуществляется при повышенных температурах (700-900 0С). Необходимое для процесса обжига теплота получается за счет экзотермических реакции окисления сульфидов.

Получающиеся в процессе обжига газы содержат 6-12% SО2, что позволяет до 70% серы исходного концентрата использовать для производства серной кислоты.

В настоящее время для обжига медных концентратов используют преимущественно печи кипящего слоя.

Характерной особенностью процессов, протекающих в кипящем слое является то, что каждая частица шихты со всех сторон омывается газами, благодаря чему эффективно используется огромная активная поверхность концентрата. Хороший контакт сульфидных частиц с газами обуславливают высокую скорость протекания реакций, а следовательно и высокую удельную производительность печи.

Высокая скорость протекания процесса обуславливает практически полное использование кислорода. Это в свою очередь является причиной получения богатых по содержанию SО2 газов.

Для регулирования температуры необходимо отводить тепло из слоя с помощью кессонов.

Продувание воздуха через слой мелких материалов неизбежно связано со значительным выносом пыли. Поэтому печи КС оборудуют мощной системой пылеулавливания. Пыль является готовым продуктом и объединяется с огарком.

Переработка хорошо термически подготовленной, тщательно перемешанной шихты приводит к существенному увеличению удельного проплава отражательных печей и снижению расхода топлива. Таким образом, включение в технологическую схему процесса обжига позволяет не только управлять составом штейна, уменьшить выбросы сернистого ангидрида, снизить затраты на конвертирование, но и делает более экономичной саму отражательную плавку.

Большая газонасыщенность горячего огарка делает его текучим и сильно пылящим при перегрузках. Возникает задача герметизации загрузки и уменьшения пылевыноса из отражательных печей.

Поверхность ванны при плавке огарка в большей своей части покрыта слоем шихты. Поступающая на поверхность ванны теплота воспринимается в основном шихтой. При загрузке огарка большими порциями из-за плохой его теплопроводности первоначально плавятся и перегреваются только поверхностные слои шихты. При загрузке огарка малыми порциями на поверхность шлака нагрев его осуществляется частично за счет теплоты, аккумулированной расплавом. При этом в поверхностном слое ванны формируется шлаковый расплав, отвечающий среднему их составу в печи. Таким образом, плавление огарка при загрузке небольшими порциями протекает в более благоприятных условиях.

При плавке огарка в газовую фазу переходит незначительное количество серы. В тоже время реакция взаимодействия высших оксидов железа и ферритов с сульфидами получает значительное развитие.

При плавке огарка основное количество магнетита поступает с шихтой и восстанавливается на поверхности расплава, где температура более высокая. Это обуславливает высокую степень восстановления магнетита.

Включение в технологическую схему процесса обжига существенно влияет на поведение и распределение ценных спутников. Чем больше степень десульфуризации при обжиге и чем более богатым получается штейн, тем больше цинка переходит в шлак.

Подавляющая часть отражательных печей отапливается мазутом и природным газом или их смесью.

Сущность отражательной плавки заключается в том, что шихта плавится за счет тепла от сжигания углеродистого топлива в газовом пространстве над ванной расплава в печи с горизонтально расположенным рабочим пространством (рисунок 1).

Шихту при этом загружают на ванну или на откосы вдоль боковых стен печи. Раскаленные топочные газы, проходя над поверхностью ванны и шихты, нагревают их, а также стены и свод, и покидают печь, имея еще сравнительно высокую температуру.

Теплопередача в печи осуществляется в основном за счет лучеиспускания от раскаленных стен, свода и продуктов сгорания.

Конструктивно отражательная печь состоит из фундамента, стен, пода, свода, газохода, металлического каркаса, устройств для загрузки шихты и выпуска продуктов плавки, горелок для сжигания топлива.

Стены печей выкладывают из хромомагнезитового кирпича непосредственно на фундаменте. В верхней части печи они имеют толщину 0,5-0,6 м, а у лещади 0,75-1 м. При плавке сырой шихты вдоль боковых стен печи образуются устойчивые шихтовые откосы, которые защищают огнеупорную кладку от быстрого разрушения.

Отражательные печи являются пламенными. Воздух для вдувания, распыления и сжигания топлива обогащают кислородом до 23-28% иногда подогревают до 200-400 0С.

Штейн, полученный в результате плавки подвергают конвертированию.

Конвертирование осуществляют продувкой штейна воздухом в горизонтальном конвертере. Перерабатываемые штейны состоят из сульфидов меди и железа. Вследствие экзотермичности основных реакции конвертирование не требует затрат топлива.

Процесс конвертирования идет в два этапа. Процесс начинается с окисления сульфида железа по реакции

2FeS + 3O2 + SiO2 = FeSiO4 + SO2 + Q

Пока в расплаве имеется достаточное количество железа, сульфида меди практически не окисляется, поскольку равновесие реакции

Cu2O + FeS = Cu2S + FeO

Нацело сдвинуто вправо вследствие более высокого сродства железа к кислороду и меди к сере. Таким образом, в первом периоде конвертирования происходит селективное окисление сульфида железа. В фурменной зоне вследствие относительного избытка кислорода окисление FeS протекает по схеме

FeS => FeO => Fe3О4

В конечном итоге при глубоком окислении все железо может быть перекислено до магнетита, который при температурах конвертирования находится в твердом состоянии. При перемешивании расплава воздухом будет образовываться однородная гетерогенная масса, состоящая из магнетита и оставшихся сульфидов.

Для отделения образующихся оксидов железа от сульфидов необходимо их конвертировать не в твердом а в жидком продукте и добиваться возможно меньшего переокисления железа до магнетита и получение его в основном в виде FeO по реакции:

2FeS + 3O2 = 2FeO + 2SO2 + Q

С этой целью для образования железосиликатного расплава в первом периоде конвертирования в конвертер подают кварц. При растворении вюстита в шлаке снижается его активность и тем в большей степени, чем больше концентрация SiO2 в шлаке.

В первый период конвертирования происходит постепенное накопление в конвертере обогащенной медью сульфидной массы. В связи с этим после каждой заливки штейна и его частичной продувки из конвертера сливают шлак и заливают дополнительную порцию штейна. Затем вновь проводят продувку.

Первый период конвертирования заканчивается холостой продувкой (без заливки штейна)., целью которой является практически полное окисление сульфида железа из обогащенной медью сульфидной массы и получение белого штейна, представляющего собой почти чистый сульфид меди CuS.

Химизм второго периода конвертирования, имеющего своей целью получение черновой меди, может быть выражен реакцией.

Cu2S + O2 = 2Cu + SO2

Которую часто изображают как последовательное протекание двух процессов

2Cu2S + 3O2 = 2Cu2O + SO2

Cu2S + 2Cu2O = 6 Cu + SO2

Процесс конвертирования в горизонтальных конвертерах является периодическим.

Рафинирование черновой меди от примесей по экономическим соображениям проводят в две стадии - сначала методом огневого рафинирования, затем электрохимическим методом.

Цель огневого рафинирования - подготовить медь к электролитическому рафинированию путем удалении из него основного количества примесей.

При электролитическом рафинировании решаются две задачи - глубокое рафинирование меди от примесей, что обеспечивает ее высокую электропроводност, и попутно извлечение ценных золота, серебра и селена [3].